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Introduction

• Crossover recombination

• Genetic breeders can use crossover

recombination to develop new varieties

• Rice is of great importance in food security

• Rice has been a key crop to comprehension of

the methylation process



Objectives

In this work we explore the relationship between

chromosomal recombination rates and different

methylation contexts, using Oryza sativa rice as a

model

Focusing on the following objectives:

• Estimate the correlation between recombination

and methylation in all contexts

• Implement a machine learning model to predict

recombination based on methylation data



Materials and Methods
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Correlations between recombination rates and methylation contexts
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Chromosomal recombination predictions using the ExtraTrees model with CHH methylation as  input 

feature



Chromosomal recombination predictions using the ExtraTrees model with CHH methylation as  input feature
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Predicted vs Experimental values

Chromosome R2 Correlation MSE R2 Correlation MSE

1 0 0.63 0.03 0.44 0.67 0.02
2 0.04 0.66 0.03 0.53 0.73 0.01
3 0.37 0.7 0.02 0.49 0.72 0.02
4 0.44 0.72 0.02 0.6 0.81 0.01

5 0.59 0.81 0.02 0.67 0.84 0.01
6 0.44 0.78 0.02 0.68 0.82 0.01
7 0.16 0.53 0.04 0.5 0.73 0.02
8 0.71 0.85 0.01 0.67 0.88 0.02
9 0.32 0.65 0.03 0.5 0.75 0.02

10 0.41 0.7 0.02 0.28 0.69 0.03
11 0.3 0.7 0.02 0.52 0.77 0.01
12 0.54 0.77 0.01 0.35 0.85 0.02
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Conclusions

• CHH context positively correlates with recombination rates along the twelve rice

chromosomes

• CHH methylated cytosines can be use to predict recombination using machine

learning models

• We invite colleagues to explore how the counting of CHH-methylated cytosines in

other species behaves with respect to chromosomal recombination.





THANKS!

mauricio.penuela@javerianacali.edu.co
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ABSTRACT

Variation of DNA methylation is the most studied epigenetic trait. It is considered a key
factor in regulating plant development and physiology, and has been related to the regulation
of several genomic features including transposon silencing, regulation of gene expression and
recombination rates. In fact, several studies have reported increased methylation around
centromere regions, generally recombination suppression regions. Nonetheless,
characterizing relationships between DNA methylation and recombination rates remains a
challenge. This work explores the relationship between recombination rates and DNA
methylation data for two commercial rice varieties. Several correlation analyses were made
between methylation levels, for each sequence context, CG, CHG, and CHG, and
recombination rates. Our aim is to identify patterns that would help predict recombination
behavior. Our results show negative correlations between recombination rates and methylated
cytosines counts for all contexts tested at the same time and separately for CG and CHG
contexts. A positive correlation between recombination rates and methylated cytosine count
was reported in CHH contexts. A similar behavior is observed when considering only
methylated cytosines within genes, transposons, and retrotransposons. Moreover, it was
shown that the centromere region strongly affects the relationship between recombination
rates and methylation, with the higher values inside the centromeric region. Finally, machine
learning regression models are applied to predict recombination using the count of
methylated cytosines in the CHH context as the entrance feature. Our findings shed light into
the understanding of the recombination landscape of rice and represent a reference
framework for future studies in rice breeding, genetics, and epigenetics.

Keywords: Epigenetic, DNA methylation, bisulfite sequencing, machine learning, modeling

INTRODUCTION

Meiotic recombination is recognized as a key process in genetics. During this process,
maternally and paternally inherited homologous chromosomes exchange information by gene
conversion or crossing over, and create novel allelic combinations. Recombination is widely
recognized for its roles in promoting the diversity to respond to continually shifting
environments, in addition to preventing the build-up of genetic load by decoupling linked
deleterious and beneficial variants (Rodgers-Melnick et al., 2015). However, meiotic
recombination between homologous chromosomes is restricted by the number and location of

https://www.zotero.org/google-docs/?wAQOX0


crossover sites per chromosome. The crossover distribution and frequency along the genome
are uneven, especially in plants (Lambing et al., 2017). Sites with high recombination rates
have been linked to subtelomeric regions that are generally hypomethylated and have high
gene and DNA transposon frequencies. In contrast, recombination is suppressed in the
centromeric region and characterized by high frequencies of long terminal repeat
retroelements and few genes (Henderson, 2012).

The role of chromatin structure and DNA methylation in determining recombination
rates has been widely reported. For example, high levels of histone H3 acetylation in
Arabidopsis mutants were associated with changes in the crossover frequencies (Perrella et
al., 2010). Likewise, studies using met1 and ddm1 mutants, which are globally
hypomethylated, showed regional remodeling of crossover frequencies, with increased
recombination in chromosome arms and decreased recombination in the pericentromeric
region (Melamed-Bessudo & Levy, 2012; Mirouze et al., 2012). However, understanding
how the DNA methylation patterns affect the recombination rates remains an open challenge.

In plants, DNA methylation occurs at cytosine nucleotides in all the sequence
contexts CG, CHG, and CHH (H = C, T or A). DNA methylation is a stable mark inherited
from generation to generation and a crucial factor for plant development (Bräutigam &
Cronk, 2018). Several studies have shown that sexual reproduction in plants involves the
reprogramming of DNA methylation patterns (Kawashima & Berger, 2014). DNA
methylation in combination with modifications of histones and non-histone proteins defines
the structure and accessibility of chromatin, which helps to regulate gene expression,
transposon silencing, chromosome interactions and trait inheritance (Zhang et al., 2018).

The methylation dynamics for each sequence context is determined by different
mechanisms and related to specific biological functions (Zhang et al., 2018). The
maintenance mechanism of plant DNA methylation depends on the context and is mediated
by different enzymes. For example, in Arabidopsis thaliana, CG cytosine methylation is
maintained by MET1, in a semiconservative manner in the DNA replication process, while
CHG methylation is maintained by CMT3 and CMT2, which enables the propagation of
methylation through a positive feedback loop together with the H3K9me2 in the cell division
process. Meanwhile, CHH methylation is maintained by DRM2 or CMT2, depending on the
genomic region (Zhang et al., 2018). De novo methylation is carried out by CMT2 for CHG
and CHH context (Kawashima & Berger, 2014) and the RdDM pathway for all sequence
contexts (Zhang et al., 2018). This process is not the same for all plants. In rice, CG cytosine
methylation is carried out by two related genes OsMET1-1 and OsMET1-2 with a possible
redundant function, while, OsCMT3a is the only functional ortholog of CMT3 involved in
CHG methylation during replication. For CHH methylation, no associated gene has yet been
reported. There is some evidence that suggests that OsCMT2 is closely related to CMT2 and
may play a role in CHH methylation (Lanciano & Mirouze, 2017). More research on
methylation and demethylation events and their precursors will be necessary to clarify these
mechanisms.
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Identifying factors influencing the meiotic recombination rates are important for
breeders interested in transferring genes from one variety to another through crosses, thus
developing new allelic combinations that allow them to meet the needs present in agricultural
systems. Recently, several studies have addressed this issue and have developed different
types of strategies to discover where crossovers occur most frequently and try to predict
them. For example, (Liu et al., 2016) developed a predictor of recombination hot/cold spots
using a machine learning approach combined with principal component analysis in yeast.
Otherwise, (Demirci et al., 2018) explored DNA sequence and shape features to train
machine learning models for predicting crossover occurrence in Arabidopisis, maize, tomato
and rice. Meanwhile, (Adrion et al., 2020) used recurrent neural networks, a deep learning
method for estimating genome-wide recombination in a natural population of African
Drosophila melanogaster. Finally, (Peñuela et al., 2022) proposed a mechanism-based model
using sequence identity between two genomes to predict recombination along rice
chromosomes. Recombination prediction has recently become important due to the
possibility of extracting data from genome sequencing technologies and exploring how
sequence features may affect it. Within these features, methylation has been reported as a
prime factor in understanding recombination.

In recent years, rice has been a key crop to comprehension of the methylation process,
because it is highly homozygous and self-pollinated, which is why it is known as a model to
study methylation patterns in monocotyledonous plants. In addition, it is of great importance
in food security, since half of the world's population depends on it as daily food (Cheng et al.,
2001). However, few studies have analyzed methylation patterns in relation to recombination
rates in rice. For instance, Habu et al., (2015) developed an experiment crossing methylated
and unmethylated rice varieties and concluded that the position and frequency of meiotic
recombination in rice centromeric heterochromatin are regulated by the epigenetic state of the
chromatin. In addition, Choi & Purugganan, (2018) explore how transposable elements
interact with host plant epigenetics. They suggest that high levels of methylation at these
elements have a role in suppressing deleterious ectopic recombination. Nevertheless, none of
these studies have explored in detail how the methylation contexts are related with
recombination rates.

In this work we explore the relationship between chromosomal recombination rates
and different methylation contexts, using Oryza sativa rice as a model. Focusing on the
following objectives 1) estimate the correlation between recombination and methylation in all
contexts, 2) describe the effect of methylation within genes, transposons and retrotransposons
with respect to recombination, and 3) implement a machine learning model to predict
recombination based on methylation data. Our results provide evidence that recombination
can be described by methylation in the context of CHH, regardless of whether it is outside or
inside genes, transposons, and retrotransposons. Machine learning models helped predict
chromosomal recombination along all twelve chromosomes of both rice varieties with mean

= 0.26 and mean correlation values between predictions and recombination rates of 0.66.𝑅2
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MATERIALS AND METHODS

Recombination rates

The recombination rates were estimated from an inter-subspecific segregating
population of 212 F11 recombinant inbred lines (RIL) obtained by single seed descent,
derived from the cross between the rice varieties IR64 (indica group) and Azucena (tropical
japonica group), and genotyped using shallow Illumina sequencing (~2x) followed by
imputation with NOISYmputer (Lorieux et al. 2019) . Local recombination rates in cM/bp
were calculated in sliding windows of 100 kbp using MapDisto v2 (Heffelfinger et al. 2017).
The details of this process and the access to the data are available in Peñuela et al. (2022).

Plant material and growth conditions for methylation experiment

Seeds of rice varieties IR64 and Azucena were germinated and grown in a growth
chamber at 30°C and 12:12 dark/light conditions for 10 days. Seedlings were transferred to a
hydroponic medium with a Kimura B solution (pH 7) and Arnon micronutrients. Roots from
three weeks-old seedlings were collected and stored at -80°C. Total genomic DNA was
extracted from frozen root tissue by CTAB 2X protocol with modifications (Maropola et al.,
2015). Genomic DNA quality was evaluated on agarose gels and DNA quantity was
measured using a Nanodrop spectrophotometer (Thermo Scientific).

Whole-genome bisulfite sequencing and data analysis

Bisulfite-seq (BS-seq) libraries were made from genomic DNA isolated from IR64
and Azucena seedling roots. DNA from three independent seedlings for each genotype was
pooled as one sample and sequenced. Bisulfite conversion of DNA, library construction and
sequencing was performed by CD Genomics (CD Genomics Inc., Shirley, New York, USA).
Basic statistics on the quality of the raw reads was done using the FastQC tool. Sequencing
adapters and low-quality data of the sequencing data were removed by Trimmomatic (version
0.36). Cleaned data were aligned to the reference genomes reported in the genebank
repository for IR64 (Accession number: RWKJ00000000) and Azucena (Accession number:
PKQC000000000) using Bismark v.0.16.3 (Krueger & Andrews, 2011) with default
parameters. Only uniquely aligned reads were maintained. Methylation calling data obtained
from Bismark were used for further analysis.

Comparison between recombination rates and methylation patterns

To compare the methylation patterns with the local recombination rates, the genomes
were divided into 100 kbp windows, in which the number of cytosines with a methylation
level greater than 75% was calculated for each of the CG, CHG and CHH contexts.
Exponential smoothing with α = 0.1 was applied to the recombination and methylation data
to remove noise associated with the abrupt change in the count of methylated cytosines in
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adjacent windows. Subsequently, a Pearson correlation analysis per chromosome was
developed to evaluate the linear relationships between the recombination rates and the
methylation patterns of both varieties.

Functional evaluation

Gene, transposon, and retrotransposon annotation information from both varieties
were used (Supplementary data S1). Pearson correlation analyzes were carried between the
number of genes, transposons and retrotransposons with respect to recombination along the
chromosome to investigate their relationship with the recombination landscape. Later, the
start and end coordinates of these elements were used to extract the count of methylated
cytosines inside them. New correlation analyses were performed to learn the trends between
methylated cytosines for each context within these functional elements with respect to
recombination. A differentiation between centromere and non-centromere regions was also
included.

Machine learning modeling

To assess the usefulness of methylation in predicting chromosome recombination, we
explored different machine learning approaches. Counts of methylated cytosines belonging to
the CG, CHG, and CHH contexts for each variety were evaluated as features for machine
learning modeling using the Shapley package (https://github.com/slundberg/shap).
Subsequently, the performance of different machine learning models was evaluated using the
LazyPredict package (https://pypi.org/project/lazypredict/). An exponential smoothing with α
= 0.1 was applied to the data input before training the model and another one to the model

output with α = 0.3. The coefficient of determination and the root of the mean square error𝑅2

RMSE were used to evaluate the performance of the models, meanwhile MSE was used for
predictions. Pearson correlation analyzes were also performed to discover general linear
trends between the predictions and the experimental data. The resulting best model was fitted
and the information from the twelve chromosomes of one variety was used as a training data
set to predict the recombination rates in each of the twelve chromosomes of the other variety.
All these analyses and the previous ones were run in Python.



RESULTS AND DISCUSSION

Correlation analysis, performed between local recombination rate and the total count
of methylated cytosines without differentiating their methylation context for IR64 and
Azucena varieties, showed a negative trend in all chromosomes with higher levels of
methylation in the centromere region (Table 1, Figure 1a). The correlation values were on
average -0.44±0.17, for all chromosomes of both varieties. Similar results in rice have been
previously described by (Yan et al., 2010) and (Habu et al., 2015), and this trend has been
widely discussed by (Yan et al., 2005). High levels of methylation in heterochromatin regions
near the centromeres have been reported as a common pattern, where meiotic recombination
is also repressed. Likewise, recombination-free regions around centromeres are likely to be
important for normal centromere function during meiosis (Habu et al., 2015; Yan et al.,
2005). The correlation analyses for each methylation context individually, showed that the
count of methylated cytosines of CG and CHG were similarly negatively correlated with
recombination (Figure 1b,c). On the contrary, the CHH contexts showed an opposite trend.
More specifically, CHH context methylated cytosines count was positively correlated with
recombination rates in chromosomes, which is opposite to the behavior by the CG and CHG
contexts (Table 1, Figure 1d and 2). This opposite relationship between the methylation
contexts of CG and CHH has been reported by (Li et al., 2012).

The positive correlation between methylated cytosine count and recombination rates
observed in the context of CHH, was not clear when all methylation contexts were assessed
together, since the methylated cytosines count in the CG and CHG contexts was high. This
trend was observed for both varieties, IR64 and Azucena, where the methylation data and the
alignment process were obtained independently. To our knowledge, positive correlation
between the CHH methylated cytosines count and recombination rates has not been reported
before, representing a new finding for epigenetics. It is unclear what the role of methylated
cytosines is in the CHH context with respect to recombination. For instance, it could be
related to the biochemical signaling for the crossing-over events or could be also a
consequence of these events.

It has been reported that CHH methylation could be related to fruit size in apples
(Daccord et al., 2017), silencing transposons in sugar beets (Zakrzewski et al., 2017), and a
potential role in A. thaliana seed dormancy, with increases in CHH methylation in seeds
during seed development and a decrease during germination (Zhang et al., 2018).
Demonstrating the multiple roles that CHH methylation can play in plant genomes. It must
not be forgotten that DNA methylation variations can be hereditary or reversible, this ability
can allow phenotypic variation and rapid response to environmental changes. Even the degree
of intraspecies epigenomic diversity can be correlated with climate and geographic origin
(Lanciano & Mirouze, 2017).

The functional analysis developed with annotation data of genes, transposons, and
retrotransposons for each variety, evidenced a high positive correlation between the number
of genes per window and the recombination rates along chromosomes for both varieties
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(Table 2). This positive trend has been previously evidenced in Drosophila, A. thaliana,
yeast, finches, monkeyflowers, and dogs, with clear hotspots typically located near promoter
regions of genes (Kent et al., 2017) and also observed in the euchromatic regions of maize
(Anderson et al., 2006). In contrast, we found a negative correlation between the number of
transposons and retrotransposons with respect to recombination rates across all chromosomes
for both rice varieties. This result can be explained by the abundance of these elements near
the centromere (Table 2, Figure 3). Similar results have been found by (Tian et al., 2009) who
suggested that the rice genome is organized along recombinational gradients, due to the
negative correlation of recombination with transposable elements and the positive one with
gene densities.

Recombination tends to occur within and near genes, and away from transposable
elements. This may reflect the passive effects of recombination initiating in open chromatin
(Kent et al., 2017). Recent analyses of the localization of recombination at the fine scale, also
tend to show negative correlations with local densities of repetitive elements. Strong
recombination suppression and a large accumulation of transposable elements are usual in
pericentromeric regions (Kent et al., 2017). For rice, this pattern is shared between japonica
and indica groups (Tian et al., 2009). There remains uncertainty about the directionality of
cause and effect, the extent to which the correlation is driven by associations of both
recombination and transposable elements with other factors, or why patterns differ among
species and types of repetitive elements. (Kent et al., 2017).

The count of methylated cytosines was assessed within genes, transposons, and
retrotransposons and compared to recombination rates (Table 3, Figures 4 and 5). The
analysis shows that the methylated cytosines count in genes, transposons, and
retrotransposons are negatively correlated with recombination rates when evaluated for all
contexts together. This indicates that methylation inside these entities was higher when
recombination was lower. The same negative trends were observed when methylated
cytosines are analyzed in CG and CHG contexts. Methylation events in transposons and
retrotransposons are associated with prevention of their expression and movement along
chromosomes, which can be damageable to the organism and even deleterious (Ahmed et al.,
2011; Kent et al., 2017). It should be noted that these methylation events can also affect
surrounding genomic regions (Ahmed et al., 2011), potentially influencing the methylation
status of nearby genes. In genes, methylation usually occurs at the promoters or within the
body of the transcribed gene, inhibiting their expression (Zhang et al., 2018). However, when
the methylated cytosines count was evaluated in the CHH context within these elements,
correlation analyses showed a positive correlation with recombination rates (Table 3). This
was a consequence of low CHH methylation near the centromere region (Figures 4 and 5).

Chromosomal regions close to the centromere have a high incidence of methylation.
When these regions were removed from the correlation analyses, trends changed from being
high negative to being lower, for all contexts evaluated together and for the CG and CHG
contexts evaluated independently (Table 4). For the methylation in the CHH context, the
markedly positive correlation also decreased but continued being positive. When only the

https://www.zotero.org/google-docs/?7x6dcm
https://www.zotero.org/google-docs/?kjC1kc
https://www.zotero.org/google-docs/?6IkPqr
https://www.zotero.org/google-docs/?VTuJv5
https://www.zotero.org/google-docs/?QCGZYB
https://www.zotero.org/google-docs/?S3UfYS
https://www.zotero.org/google-docs/?6jwPMv
https://www.zotero.org/google-docs/?jtPzkF
https://www.zotero.org/google-docs/?jtPzkF
https://www.zotero.org/google-docs/?46PmNA


centromere regions were evaluated, negative correlations were evidenced in all contexts
when they were evaluated together, and in the contexts of CG and CHG when they were
evaluated independently. These results are in agreement with the reported importance of
DNA methylation for plant chromosomal interactions in pericentromeric regions (Zhang et
al., 2018) and with the results obtained by (Habu et al., 2015) who indicate that the position
and frequency of meiotic recombination in the centromeric heterochromatin of rice are
regulated by the epigenetic state of the chromatin. With respect to methylation in CHH
contexts, the correlation of the centromere region was positive but weaker than that of the
whole chromosome (Table 4).

The contributions of methylation in CG, CHG, and CHH contexts to predict
recombination as features of machine learning approaches were evaluated with the help of the
Shapley package. The results showed a great contribution of CHH for the prediction of
recombination, and a low contribution of CG and CHG for both varieties (Figure 6a,b). This
was in agreement with previous results where the CHH context had the highest positive
correlations with respect to chromosome recombination rates, while the CG and CHG
contexts had negative correlations. The Shap summary plot also showed the same trend,
evidencing the strongest effect on recombination when the CHH values were higher (Figure
6c,d).

Subsequently, the methylated cytosines count in the CHH context was used as a
unique feature to evaluate regression algorithms of machine learning. This evaluation was
carried out independently for each variety using the Lazy Predict package. The results

showed that the Extra Trees algorithm performed best ( = 0.57, RMSE = 0.01 for IR64; =𝑅2 𝑅2

0.69, RMSE = 0.01 for Azucena). We thus chose this algorithm to develop the training and
subsequent predictions.

Predictions on Azucena's chromosomes, by training the Extra Trees algorithm with

information from IR64, gave an of 0.32±0.13 and a MSE of 0.02±0.00 on average.𝑅2

Meanwhile, predictions on IR64's chromosomes by training the Extra Trees algorithm with

information from Azucena, gave an of 0.21±0.21 and an MSE of 0.03±0.00 on average.𝑅2

For both cases, the average correlation values between predictions and recombination rates
were 0.67±0.06 for Azucena and 0.65±0.07 for IR64, evidencing a positive trend (Table 5,
Figure 7).

Several studies have focused on predicting recombination using machine learning. For
example, Liu et al., (2016) combines a support vector machine with a consensus feature
(called dinucleotide-based autocross covariance) to predict recombination of hot/cold spots in
yeast. Authors such as Demirci et al., (2018) have used features as gene annotation, propeller
and helical twist, AT/TA dinucleotides, and CA dinucleotides to train machine learning
models to predict crossover occurrences in Arabidopsis, maize, rice, and tomato. More
recently, Adrion et al., (2020) predicted the recombination landscape in African populations
of Drosophila melanogaster using deep learning with recurrent neural networks. For all
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cases, the results have been satisfactory according to the specific objective of each study,
which demonstrates the power of machine learning approaches to predict complex traits such
as chromosomal recombination.

In the case of this paper, ExtraTrees made it possible to predict chromosomal
recombination using a single feature: the CHH methylated cytosines count. It was possible
due the high correlation between this feature and the recombination rates, which behaved
similarly along all chromosomes (Figure 7). We trained the model on a dataset of one variety
and tested it on the other, performing two independent tests and finding that results were
consistent. This opens a door for future studies we anticipate that these trained models can be
used to predict chromosomal recombination rates in any variety of Oryza sativa rice, since
the two varieties used in this study, IR64 and Azucena, are highly distant genetically,
belonging to the indica and japonica groups, respectively.

Compared to the previous model described by Peñuela et al. (2022), which uses a
measure of genomic identity between parental genomes to predict recombination rates, the
approximation presented here has some advantages. First, methylation data is only required
for one of the varieties involved in the cross; this information is sufficient to predict
recombination rates using the CHH methylated cytosines count as a feature in a machine
learning regression model. Additionally, no assumptions are required to apply the model, and
thresholds and penalty values to increase the prediction values are not needed. Most
importantly, there is no need for centromere correction because the CHH methylated
cytosines count decreases naturally around the centromere region and increases in telomeric
regions following the recombination landscape. This is the most remarkable discovery of this
work. However, it must be noted that these two models work with different data types: the
identity model of (Peñuela et al 2022) uses DNA sequences of parental genomes; meanwhile,
the one presented here uses methylation data obtained by bisulfite sequencing experiments.
The choice of one model over the other will depend on the availability of the types of data or
their possibility of extraction.

CONCLUSION

In this study, we reported how methylated cytosines in the CHH context positively
correlate with recombination rates along the twelve rice chromosomes for two genetically
distant rice varieties evaluated, IR64 and Azucena. However, a negative correlation was
obtained between methylation and recombination rates when only CG and CHG contexts
were tested, as well as in the three methylation contexts together. For this case, the positive
correlation of CHH was hidden due to the higher number of methylated cytosines from the
CG and CHG contexts. In addition, functional analysis showed that genes were positively
correlated with recombination rates, unlike transposons and retrotransposons, which showed
a negative correlation. The correlation between methylation and recombination showed the
same trends for the entire genome with respect to only methylation in genes, transposons, and
retrotransposons. The influence of the centromere on methylation patterns and its correlation



with recombination rates was evident, supporting the hypothesis that the position and
frequency of meiotic recombination in rice centromeric heterochromatin are regulated by the
epigenetic state of the chromatin. Finally, we trained a machine learning model using the
CHH methylated cytosines count to predict recombination rates, which obtained consistent
results in two independent data sets. We recommend the extraction of methylation data and
the application of machine learning models to future studies interested in predicting
recombination rates using as feature the count of CHH methylated cytosines in rice. We invite
colleagues to explore how the counting of CHH-methylated cytosines in other species
behaves with respect to chromosomal recombination.
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Figure 1. Recombination and methylated cytosines through chromosome 1 for the rice
varieties IR64 and Azucena. The centromere is represented by a red dotted line and the
influence of the centromere region by red solid lines. a) methylated cytosines of all contexts.
b) Methylated cytosines of CG context. c) Methylated cytosines of CHG context. d)
Methylated cytosines of CHH context.



Figure 2. Distribution of methylated cytosines in CHH context along the twelve rice
chromosomes for the IR64 and Azucena varieties, in comparison with the chromosomal
recombination between these two varieties. The centromere is represented by a red dotted line
and the influence of the centromere region in recombination by red solid lines.



Figure 3. Genes, transposons, retrotransposons, compared to cross over recombination
through chromosome 1 for rice varieties a) IR64 and b) Azucena. The centromere is
represented by a red dotted line and the influence of the centromere region in recombination
by red solid lines.



Figure 4. Recombination and methylated cytosines inside genes, transposons, and
retrotransposons through chromosome 1 for the rice variety IR64. The centromere is
represented by a red dotted line and the influence of the centromere region in recombination
by red solid lines.



Figure 5. Recombination and methylated cytosines inside genes, transposons, and
retrotransposons through chromosome 1 for the rice variety Azucena. The centromere is
represented by a red dotted line and the influence of the centromere regionin recombination
by red solid lines.



Figure 6. Shapley values and contributions of features CG, CHG and CHH to the prediction
of recombination rates, using IR64 and Azucena data. a) Contribution values of features for
the IR64 variety. b) Contribution values of features for the Azucena variety. c) Shapley values
for the IR64 variety. d) Shapley values for the Azucena variety.



Figure 7. Cross-recombination predictions between IR64 and Azucena varieties, through the
Extratrees machine learning model using the count of methylated cytosines in the CHH
context as a feature. Predictions on the IR64 manifold were made using Azucena methylation
as the training dataset, and predictions on the Azucena manifold were made using IR64
methylation as the training dataset.
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Abstract

Meiotic recombination is a crucial cellular process, being one of the major drivers of
evolution and adaptation of species. In plant breeding, crossing is used to introduce
genetic variation among individuals and populations. A better characterization of the
variation of the recombination rates along the chromosomes would enable breeding
programmes to increase the chances of creating novel allele combinations, and more
generally, to introduce new varieties with a collection of desirable traits. While different
approaches to predict recombination rates for different species have been developed,
they fail to estimate the outcome of a crossing between two specific accessions. This is
missing in the panel of tools that breeders can use to reduce costs and execution times
of crossing experiments. This papers builds on the hypothesis that chromosomal
recombination correlates positively to a measure of sequence identity. In particular, we
develop a model that uses sequence identity, combined with other features derived from
genome alignment (including the number of variants, inversions, absent bases, and
CentO sequences) to predict local chromosomal recombination in rice. Model
performance is validated in an inter-subspecific indica x japonica cross, using 212
recombinant inbred lines. Across all 12 chromosomes, an average correlation of about
0.8 between experimental and prediction rates is achieved.

Author summary

Crossover recombination is the event by which large portions of DNA are exchanged
between homologous chromosomes during meiosis. For genetic breeders, it is of great
interest to know where these exchange events occur. They can use the highest
recombination regions to introduce, through genetic crosses, relevant genes from one
variety into another that lacks them. In this paper, we demonstrate how the sequence
identity between the genomes of two rice varieties (IR64 and Azucena) is positively
correlated with chromosomal recombination. On this basis, we build a model that uses
information from the alignment between the two genomes, such as variants, inversion
bases, absent bases, and CentO sequences, to predict recombination along the
chromosomes. The model consists of different steps that fit the original identity values
using a series of parameters in 100 kbp windows. We verify that the model can be
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adjusted for any of the twelve chromosomes and obtain similar predictions in all cases.
We expect this model will help breeders to predict high and low recombination regions,
facilitating the genetic improvement of rice varieties without the need to incur in the
expense of time, effort, and money involved in calculating experimental recombination.

Introduction 1

Crossover recombination refers to the exchange of genetic material across homologous 2

chromosomes. It is an important process during meiosis in the production of gametes 3

and contributes to the creation of novel allele combinations [1–3]. Both biological and 4

biochemical factors influence the recombination rates along each chromosome. In rice, 5

for example, it has been shown that recombination rates play a key role for adaptive 6

evolution in rapidly changing environments and vary with exposure to different 7

stresses [4]. Furthermore, a number of studies have shown that recombination rates 8

across different regions along a chromosome (i.e., for windows of a certain size along a 9

chromosome) are not uniformly distributed [5, 6]. Instead, there exist the so-called hot 10

and cold spots, which represent regions that, when compared to regular regions, exhibit 11

relatively high and low rates of recombination. According to [4, 7, 8], the location of 12

such regions varies between populations, primarily as a result of population history. 13

Over generations, recombination has played an important role in the evolution of the 14

genome in plants [6]. Evidence suggests that recombination responds not only to direct 15

selection but also to the effects of indirect selection over different traits [7]. From the 16

perspective of agricultural growth and development, understanding recombination rates 17

enables plant breeders to develop better criteria for determining (i) which varieties 18

represent the most suitable parents for crosses and (ii) which progeny make the 19

selection process highly effective [9]. More specifically, estimating the recombination 20

rates along the chromosomes accelerates the fine mapping of genetic traits [10], which 21

lies at the heart of efforts to design better crops [2]. 22

The design and development of experiments to measure recombination rates between 23

varieties is a demanding task, both in terms of costs and time. Such efforts require, first, 24

a large number of recombinant descendants and second, a large number of markers from 25

high throughput next generation sequencing. Not surprisingly, several studies have 26

introduced different strategies to characterize recombination rates along the 27

chromosomal arms [2, 3, 8, 11–15]. These studies generally evaluate several varieties to 28

construct a genomic recombination landscape for a species as a whole. They tend to 29

follow one of two general approaches. The first approach seeks to discover and 30

understand which factors explain recombination. The second approach aims to predict 31

either the location of hot and cold spot, or to estimate the recombination rates along 32

the chromosome using different types of genome sequence information. 33

Following the first approach, the work by Rodgers-Melnick et al. [11] identifies 34

recombination breakpoints in populations of U.S. and Chinese maize. The authors show 35

that the distribution of gene density and CpG methylation explains, on a broad scale, 36

cross-overs. In another closely-related study, Colomé-Tatché et al. [12] evaluate the 37

combined effect of removing sequence polymorphisms and repeat-associated DNA 38

methylation on the meiotic recombination landscape of an Arabidopsis mapping 39

population. Similarly, Horton et al. [13] test 1, 307 worldwide Arabidopsis accessions to 40

characterize the pattern of recombination history. The authors observe an enrichment of 41

hot spots in regions of intergenic space and repetitive DNA. Finally, Haas et al. [2] 42

identify AT-rich DNA motifs associated with recombination breakpoints in 60 43

recombinant inbred lines of tomato. 44

One of the first studies to take the second approach is the work by Liu et al. [8]. 45

Based on sequence k-mer frequencies, the authors predict hot and cold spots in yeast 46
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using a machine learning method known as increment of diversity combined with 47

quadratic discriminant analysis. The work is extended in [14], by introducing an 48

algorithm to predict hot and cold spots in yeast. Unlike [14], the work by Demirci et 49

al. [15] applies features related to genome content and genomic accessibility, such as 50

gene annotation, propeller twist and helical twist, and AT/TA dinucleotides to train 51

different machine learning models (specifically, decision trees, logistic regression, and 52

random forest models). The work predicts hot and cold spots in maize, rice, tomato, 53

and Arabidopsis. The more recent work by Adrion et al. [3] proposes a method to 54

predict the recombination landscape based on deep learning algorithms; they evaluate 55

model predictions in African populations of Drosophila melanogaster. 56

A number of studies that follow the second approach characterize broad-scale 57

recombination rates for windows of certain size along a chromosome. They tend to focus 58

on a given population or species. However, little attention has been paid to developing 59

analytical frameworks that help explain recombination rates for a specific crossing 60

between two particular varieties. The lack of such models limits the applicability of the 61

outcome of studies that follow the second approach for breeding programmes. To 62

overcome this limitation, the validation of such models is required. The lofty aim of the 63

mechanism-based models is that the principles for prediction are generalizable and 64

applicable to other varieties or species. 65

A large number of studies that aim to estimate recombination rates focus on rice for 66

several reasons. Among them, rice (O. sativa L.) is highly homozygous, which makes 67

haplotype reconstruction easy and also eliminates the need of phasing. Moreover, rice 68

provides food for more than half the world’s population [16]. This paper focuses on 69

predicting specific recombination rates that result as the product of a crossing between 70

the rice varieties of IR64 (indica) and Azucena (japonica). In particular, this work 71

explores the hypothesis that an identity measure between genome sequences of the 72

parents is correlated with chromosomal recombination. The analysis is performed based 73

on whole genome sequencing of both rice varieties and their recombinant inbred lines. 74

The main result suggests that the sequence identity is positively correlated with 75

chromosomal recombination. Model is proposed to predict recombination using parental 76

sequences as its input. Unlike the previously models based on machine learning or deep 77

learning methods, this model is a mechanism-based model, whose outcome is the result 78

of a series of steps applied to specific features measured after the alignment process 79

between parental sequences. The model is calibrated on chromosome 1 and tested on the 80

remaining 11 chromosomes. The validation of the model shows that the prediction for 81

the 12 rice chromosomes has an average correlation of 80% with the recombination rates. 82

The model offers a tool to help improve the plant breeding programs in rice cultivars. 83

Materials and methods 84

The IR64 (indica cluster) and Azucena (tropical japonical cluster) varieties were crossed 85

to generate a F1 generation. A total of 212 F8 recombinant inbred lines (RIL) were 86

generated in the greenhouse at IRD, France by single-seed descent (SSD) from the F2. 87

Then, the lines were advanced in the field to the F12 generation at the International 88

Center for Tropical Agriculture (CIAT, now “Alliance Bioversity-CIAT”) in Palmira, 89

Colombia. This population is also part of a Nested association Mapping design [17]. 90

Whole Genome Sequencing 91

Leaf tissue from parent plants and F12 lines were collected, and DNA was extracted 92

following a protocol similar to [17]. Platinum-grade PacBio assemblies of the parental 93

genomes were obtained at the Arizona Genomics Institute (AGI, Tucson, Arizona) [18]. 94
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The IR64 and Azucena genomes that were used are available in the GenBank repository 95

with the accession numbers RWKJ00000000 and PKQC000000000, respectively. The 96

F12 RIL genomes were sequenced using paired-end Illumina with a depth of 97

approximately 1x. 98

Data imputation and recombination values 99

SNP features for the F12 genomes were extracted using a standard bioinformatics 100

pipeline. Briefly, Illumina reads were mapped on the IR64 RefSeq, and SNP features 101

were extracted with the GATK package. Genotypes and recombination breakpoints 102

(that is, meiotic crossovers) were imputed and corrected using the NOISYmputer 103

algorithm introduced in [19]. The resulting genotypes data for each chromosome consist 104

of a matrix of genetic markers (arranged by sequence position) versus individuals. An 105

entry is encoded as A or B depending on the parental origin of the corresponding 106

sequence. Genetic recombination maps were calculated with MapDisto v2 [20,21], using 107

the Kosambi mapping function to convert recombination fractions into centimorgans 108

(cM) [22]. 109

Recombination measurement 110

Cublic spline smoothing of local recombination rates, expressed as cM/bp, were 111

calculated in sliding windows of 100 Kbp in MapDisto v2. 112

Data pre-processing protocol 113

Since we wished to test the hypothesis that crossover frequency is a function of genome 114

similarity, sequence features were extracted and a measure of “identity” was introduced. 115

In particular, the script consisted of an initial alignment for each pair of parental 116

chromosomes using the nucmer command from MUMmer3 [23] with default parameters. 117

The outcome is a delta file which is filtered using the command delta-filter -r -q. 118

The filtered file is used to extract coordinates using the command show-coords -r. 119

Sequence variants are extracted from the initial delta file using the command 120

show-snps. Subsequently, the sequence is divided into windows of 100 Kbp of size. 121

Each window is built and associated with parameters such as mapped and absent bases, 122

number of variants (bases corresponding to SNPs or deletion polymorphism), and bases 123

in inversions. The identity of each window w, denoted by Id(w), is constructed to 124

measure how similar the two sequences ref and qry are in equivalent regions depending 125

on how many nucleotides they share. The number of variants V , the number of bases in 126

inversions I, and the absent bases A are the features that can modify the identity 127

criteria directly. If these features are not present in a certain window, its identity value 128

is set at its maximum value: 129

Id(w) = window size− V (w)− I(w)−A(w). (1)

Testing hypothesis 130

Under the hypothesis that similar genomic regions recombine more frequently, a 131

correlation analysis was developed between the identity criteria and the local 132

recombination values for the twelve rice chromosomes. The Pearson’s correlation 133

coefficient was used as the measure of correlation r. The identity and the recombination 134

were exponentially smoothed to reduce noise and find the best fit with the trend of the 135

data. For example, the actual recombination measured on a sequence of windows, 136

denoted by X(w), was exponentially smoothed as follows: 137
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Xs(w) =

{
X(w) w = 0

αX(w) + (1− α)Xs(w) w > 0,
(2)

where α ∈ (0, 1) is the smoothing factor. For the correlation analysis, both identity and 138

experimental recombination were smoothed with the same factor. Various exponential 139

smoothing factors were evaluated to try to reduce noise and find the best fit with the 140

data trend (Fig 1 and Fig 2), being α = 0.1 the one that gives the best fit. 141
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Fig 1. Effect of smoothing on recombination landscape. Landscape of identity
and recombination, with its corresponding correlation, at different levels of smoothing
for rice chromosome 1 in the IR64 x Azucena cross.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
smoothing (1 )

0.0

0.2

0.4

0.6

0.8

co
rre

la
tio

n 
(r)

Fig 2. Effect of smoothing on correlation distribution. Boxplots of correlations
between identity and recombination for 12 rice chromosomes (cross IR64 x Azucena) at
different smoothing factor.

Model description 142

The proposed model predicts recombination for each pair of homologous chromosomes 143

from two parental organisms. Arbitrarily, one of the parental organisms is taken as 144

reference. Each pair of homologous chromosomes is identified by a reference chromosome 145

(ref ) and a query chromosome (qry). For each (ref, qry) pair, the model compares using 146
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an alignment process. Additionally, the CentO sequence is aligned with each of ref and 147

qry to approximate the location of each centromere. Moreover, the reference 148

chromosome is subdivided into n ∈ N > 0 windows of length 100Kbp each. The model 149

then assigns a recombination value to each window, depending on a set of features from 150

the ref-qry alignment and the approximate location of the centromeres (Fig 3). 151

Fig 3. Model workflow. Schematic representation of data preprocessing and model
steps to predict recombination.

Three features from the ref-qry alignment are considered for each window: 152

• Identity: proportion of identical base pairs. 153

• Variants: proportion of SNPs and deletion polymorphisms. 154

• Absent bases: proportion of query bases that are not mapped in the reference 155

chromosome. 156

Let W = {1, 2, ..., n} be the set representing the n windows partitioning a given 157

chromosome, and Id0 : W → [0, 1], V : W → [0, 1], and A : W → [0, 1] functions 158

representing the identity, the variants, and the absent bases respectively. The identity is 159

taken as a starting point to predict recombination. The model adapts the identity 160

values in four sequential steps. 161

Step 1: Cases 162

Three mutually exclusive cases are considered starting from the identity values mapped 163

by Id0. The model has a total of 7 parameters (pi ∈ [0, 1], ∀i ∈ {1, 2, ..., 7}), which 164

transform the identity values as follows. The first case penalizes with p1 those windows 165

with identity values inferior to p2. The second case rewards with p3 those windows with 166

identity values inferior to p4. The third case penalizes with p5 those windows with 167

absent bases greather than p6. An additional constraint to apply Case one is that the 168

variants must be above p7, while for the cases two and three variants must be below the 169

same threshold (p7). Thus, an updated identity function Id1 : W → R is defined for 170

each window w ∈ W as: 171
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Id1(w) =


Id0(w)− p1 , Id0(w) < p2 ∧ V (w) > p7
Id0(w) + p3 , Id0(w) < p4 ∧ V (w) < p7
Id0(w)− p5 , A(w) > p6 ∧ V (w) < p7
Id0(w) , otherwise

(3)

Step 2: Negative values 172

Negative recombination values do not make biological sense. Therefore, only non- 173

negative values are considered by correcting negative values to be zero. Mathematically, 174

this step produces a function Id2 : W → R ≥ 0, defined for each w ∈ W as: 175

Id2(w) = max(0, Id1(w)) (4)

Step 3: Centromere correction 176

The alignments of the CentO sequence helps in approximating the location of a 177

chromosome centromeres. Let wcentO be a function that maps each of the reference 178

and query chromosomes to the set of windows having the greatest number of alignments 179

with the CentO sequence. Note that wcentO(ref) ⊆ W , wcentO(qry) ⊆ W , and both 180

sets are non-empty. Then, the centromere boundaries can be approximated by the 181

interval [c0, c1] defined by: 182

c0 = min(wcentO(ref) ∪ wcentO(qry)) (5)

c1 = max(wcentO(ref) ∪ wcentO(qry)) (6)

That is, c0 and c1 are the left- and right-most windows with the greatest number of 183

alignments with the CentO sequence, between the two chromosomes input to the model. 184

Next, the weight functions f for centromeric chromosomes and g for the telomeric 185

chromosomes are defined: 186

f(w) =


1 , 0 ≤ Id2(w) ≤ c0 − 50
−1
50 (w − c0) , c0 − 50 < Id2(w) ≤ c0
0 , c0 < Id2(w) ≤ c1
1
50 (w − c0) , c1 < Id2(w) ≤ c1 + 50
1 , c1 + 50 < Id2(w) < n

(7)

g(w) =

{
0 0 ≤ Id2(w) < c1
1 c1 ≤ Id2(w) ≤ n

(8)

Finally, the identity values are corrected by the function Id3 : W → R, using the 187

weight functions as follows: 188

Id3(w) =

{
Id2(w) · f(w) c1 > n/4
Id2(w) · g(w) otherwise

(9)

Step 4: Smoothing 189

The final part of the model is to smooth the data to reduce noise. Here, an adaptation 190

of the exponential smoothing beginning at zero is used with a smooth factor α = 0.1. 191

Thus, the final prediction of recombination is given by the function Id4 : W → R ≥ 0 192

defined by: 193

Id4(w) =

{
0 w = 0

αId3(w) + (1− α)Id4(w) w > 0.
(10)
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Parameter optimization and model evaluation 194

The two metrics involved in the evaluation and calibration of the model are the Pearson 195

correlation r and the coefficient of determination R2. Given paired data 196

{(x1, y1), . . . , (xn, yn)} consisting of n pairs, these two metrics are defined as follows: 197

r =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)
2 ∑n

i=1 (yi − ȳ)
2

(11)

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)
2 (12)

where x̄ is the sample mean and ŷ is the fitted linear regression between x and y. 198

The 7 model parameters (pi ∈ [0, 1] ∀i ∈ {1, 2, ..., 7}) are adjusted by maximizing 199

the coefficient of determination R2 between the final prediction of the model Id4 and 200

the experimental recombination Xs (see Eq 2) of a single chromosome. The parameter 201

optimization was done by the Sequential Least Squares Programming (SLSQP) 202

minimizing (1−R2). The model is adjusted from information on one chromosome and 203

the adjusted model is used to predict recombination on the remaining 11 chromosomes. 204

The prediction performance for each chromosome is evaluated based on Pearson 205

correlation r and coefficient of determination R2 between its output and the 206

experimental recombination. 207

Results and Discussion 208

Sequence identity versus recombination 209

Our identity criteria values between parental chromosome sequences correlates 210

positively with their progeny experimental recombination rates, as shown in Fig 4 and 5. 211

This supports the hypothesis that similar genome regions recombine more frequently 212

than regions with higher structural difference, a relationship that could explain several 213

evolutionary mechanisms. Regarding plant crossing, this is coherent with the 214

observation that recombination rates are higher in related varieties than in genetically 215

distant ones. The identity sensus stricto measures the ratio of identical bases between 216

two sequences and can accurately represent the structural variability because every base 217

that is not equal between sequences is marked as a variant, inversion, or absent base, 218

this even eliminates a common problem such as repetitive sequences because they are 219

absorbed by the identity measure. The identity is in great proportion conditioned to the 220

alignment process. However a good alignment process by itself is not sufficient for a 221

proper identity estimation, because contigs do not follow a strict pattern due to 222

structural rearrangements. As a result the resulting alignment is filled with paired and 223

unpaired regions, and in many cases with inversion events or overlapping, without 224

counting on the abundant variants such as SNPs and indels polymorphisms. Therefore, 225

we develop a protocol which allows to quantify the identity and other variables using a 226

windows-based approach. 227

The mean correlation between recombination rates and sequence identity evaluated 228

for the 12 rice chromosomes in the IR64 x Azucena cross is r = 0.53± 0.21. This 229

positive correlation is important because a single variable is supporting a considerable 230

magnitude of the explanation. However, identity is a condensed variable that implicitly 231

carries the information of other structural variables. More specifically, identity is the 232

ratio of bases that do not correspond to variants, inversions, or absent bases within a 233

genome interval. 234
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Chromosome 03 (r = 0.414)
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Chromosome 04 (r = 0.521)
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Chromosome 05 (r = -0.009)
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Fig 4. Identity correlation analysis for chromosomes 1 to 6. Landscape and
correlation between chromosomal recombination and sequence identity for rice
chromosomes 1 to 6 (cross IR64 x Azucena).

The higher correlations are found on chromosomes 9 and 10 with 0.809 and 0.705 235

respectively, meanwhile, lower correlations are found on chromosomes 5 and 12 with 236
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Chromosome 07 (r = 0.528)
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Chromosome 09 (r = 0.809)
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Chromosome 10 (r = 0.705)
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Chromosome 11 (r = 0.608)
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Fig 5. Identity correlation analysis for chromosomes 7 to 12. Landscape and
correlation between chromosomal recombination and sequence identity for rice
chromosomes 7 to 12 (cross IR64 x Azucena).

−0.009 and 0.362, being chromosome 5 the unique with near zero, negative correlation. 237

This can be explained because the alignment of chromosome 5 between these two 238
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varieties has a high identity in the centromere region, originating a trend opposite to 239

that observed in other chromosomes, which usually report low identity values in 240

centromeric regions. 241

Sequence identity by itself can reproduce some peaks and valleys of the 242

recombination landscape, indicating that recombination is greatest in regions where 243

identity between genomes is greatest and least where it is not. Thus, if genomic identity 244

is highly correlated with chromosomal recombination, it can be used as a starting point 245

for the construction of a model that aims to predict recombination. We thus developed 246

a model based on sequence identity. 247

Rationale behind the model 248

In the first step of the model, three cases are defined to alter the identity of some 249

windows, and to better fit valleys and peaks of real recombination using sequence 250

information (recall Eq 3). The first case, the penalty stage, is compatible with the idea 251

that regions with low identity recombine less. Therefore, a window with low identity 252

value should be penalized, in contrast to a window with high identity values that should 253

remain intact. This stage causes regions with predominant low identity values to form 254

valleys, thus increasing the correlation with chromosomal recombination rates. 255

Biologically, these adjustments model the fact that few recombination events are 256

expected if there is no high genomic identity between parental chromosomal regions. 257

This observation goes in accordance with the initial hypothesis of this study. 258

The second case, the reward stage, consists of rescuing windows with low identity 259

values. The reason for doing this is that there could be alignment fragments with high 260

(almost perfect) identity values, and with size smaller than the 100 Kpb window and 261

having low variants proportion. Therefore, this case is useful to predict recombination 262

peaks in regions with low or average identity. 263

The third case, the correction stage, is included in order to deal with windows with 264

an over-adjustment in the alignment process; mainly, windows with high identity values 265

that are not dealt with by the previous two cases. If there are absent bases in a window, 266

it means that the data in the window is constructed from more than one contig. 267

Furthermore, such a window contains few variants, probably because the information 268

depends on multiple contigs that do not accurately represent the structure of the 269

corresponding chromosomal region. For windows in which none of the three previous 270

cases are applied, the initial identity values are assigned. 271

The second step of the model consists of zeroing the negative values resulting from 272

the first step. This is necessary because, biologically, recombination rates are always 273

positive. 274

The third step of the model tries to predict the boundaries of the centromeric region. 275

It applies a weight function to correct the predictive values close to the centromere 276

where recombination is expected to be lower than in the rest of the chromosome. 277

CentO(AA) sequence reported by Lee et al. [24] was mapped on the reference and query 278

chromosomes to predict their centromere positions. The weight function was applied to 279

the data obtained from step two with the following aim: the predictive values furthest 280

from the centromere are unchanged, while those close to the centromere are multiplied 281

by values that increase linearly from zero (at the maximum CentO density point, 282

Cent0max) to one at the bounds of a defined window around the Cent0max. The best 283

range, according to the in-silico experimentation, for decreasing and increasing linear 284

functions near the centromere is defined in 50 windows. In the case of Chromosome 9, a 285

special centromere correction was proposed since its telomeric centromere has a 286

Nucleolar Organizer Region on the short arm, which is known to block 287

recombination [25,26]. This special case should be applied, in general, when the region 288
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of the centromere is predicted to be within the first quarter of the chromosome 289

(Figure 6). 290
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Fig 6. Centromere detection Centromere detection using CentO sequences and
centromere correction distribution based on CentO. The vertical dotted line indicates a
quarter of the length of the chromosome, the limit on which depends the weight
function chosen for the correction of the centromere.

Finally, the fourth step, consisting of applying a special adaptation of exponential 291

smoothing that replaces the value of the first window (i.e. telomeric regions) with zero, 292

allows the prediction of the recombination rate to start at zero as actually occurs in the 293

experimental data. Several smoothing factors were evaluated, with α = 0.1 the one that 294

mostly increases the prediction rate in the in-silico experimentation with the model. 295

Parameter optimization and model evaluation 296

The model was calibrated on each of the twelve chromosomes. Each calibration resulted 297

in a different set of optimal parameters shown in Table 1. 298

Table 1. Parameters for each model calibration.

parameter chr01 chr02 chr03 chr04 chr05 chr06 chr07 chr08 chr09 chr10 chr11 chr12
p1 0.529 0.578 0.568 0.563 0.470 0.469 0.508 0.488 0.476 0.467 0.380 0.504
p2 0.970 0.960 0.950 0.940 0.940 0.970 0.930 0.940 0.920 0.960 0.920 0.940
p3 1.000 0.000 0.102 1.000 0.000 0.998 1.000 0.135 0.000 0.000 0.000 1.000
p4 0.900 0.300 1.000 0.100 0.600 0.900 0.600 1.000 0.700 0.300 0.700 0.900
p5 1.000 1.000 0.500 0.665 1.000 1.000 0.700 0.100 0.500 1.000 1.000 0.536
p6 0.000 0.000 0.100 0.000 0.000 0.000 0.100 0.100 0.100 0.000 0.000 0.000
p7 0.002 0.002 0.001 0.004 0.002 0.002 0.005 0.004 0.001 0.002 0.005 0.003

The columns indicate the chromosome on which the model was calibrated and its corresponding set of optimum parameters.

The 12 model calibrations were used to test the prediction on the remaining eleven 299

chromosomes. Fig 7 shows the distribution of the values r and R2 obtained when 300

evaluating the twelve predictions of each model calibration. The results look similar in 301

all cases for both r and R2. Furthermore, a two-sample Kolmogorov-Smirnov test, was 302

performed between the evaluations of each pair of model calibrations. The test output 303

indicated that the difference between the R2 distributions is not statistically significant 304
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(all p-values > 0.05). The same happens with the distributions of r (all p-values > 0.05). 305

Therefore, the 12 distributions of R2 can be considered equal to each other, as can the 306

12 distributions of r. This means that using the model calibrated on any arbitrarily 307

chosen chromosome does not generate significant changes in the prediction performance. 308

With this in mind and for practical reasons, some results discussed below are focused on 309

the prediction obtained with the model calibrated on chromosome 1, which turns out to 310

be the longest and therefore the one that provides the greatest amount of data for 311

calibration. 312
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Fig 7. Boxplot distributions of model performance.
r and R2 distributions for each model calibration evaluated in the 12 chromosomes.

Overall, for all 12 calibrations of the model, the predicted recombination have a 313

correlation of r = 0.8± 0.012 and a coefficient of determination R2 = 0.41± 0.073, 314

which shows the power of the model to reproduce recombination trends along 315

chromosomes. In terms of correlation, the lowest average value belongs to the model 316

calibrated with chromosome 3 (r = 0.761± 0.081). The lowest average coefficient of 317

determination belongs to the model calibrated with chromosome 2 (R2 = 0.231± 0.482). 318

While, the model calibrated with chromosome 5 has the highest average performance for 319

both evaluation metrics: r = 0.804± 0.062 and R2 = 0.5± 0.157. 320

In particular, the predictions of the model calibrated with chromosome 1 yields on 321

r = 0.785± 0.06 and R2 = 0.314± 0.406. It should be noted that the correlation on the 322

calibrated chromosome (r = 0.708) is lowest than the correlations of the remaining 323

predictions on the other 11 chromosomes (r = 0.792± 0.057). The latter indicates that 324

this model is not overfitted to the observed data, and is capable of predicting 325

recombination rates of independent datasets, even achieving better performance. 326

Fig 8 and Fig 9 depicts, on the left, the landscape for the experimental 327

recombination, identity, and model predictions. The shaded blue band on each 328

chromosome represents the standard deviation of the predictions made with the 12 329

calibrated models. The width of these bands indicates that the predictions from any of 330

the model calibrations are consistent across all chromosomes. Fig 8 and Fig 9 also 331

depicts, on the right, the linear relationship between the experimental recombination 332

and the prediction of the model calibrated with chromosome 1. The marker color in the 333

scatter plot, and the bar color at the bottom of the line plots, represents the case of the 334

model that was applied in a specific window. 335

It is important to analyze the incidence of the cases, from step 1 of the model, in the 336

prediction of recombination. For all chromosomes, regardless of model calibration, the 337

first case is the most applied in 67.2% of the chromosome windows on average, followed 338

by the non-application of any case 26.2%. Meanwhile, the cases two and three are the 339

least applied, with an average of 4.2% and 2.4% respectively. This indicates that the 340

first case of step 1 is the one that contributes the most to the prediction of the model 341

for all chromosomes, allowing the formation of medium and low recombination regions. 342
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Chromosome 01 (r = 0.689 ± 0.02, R2 = 0.264 ± 0.123)
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Chromosome 03 (r = 0.716 ± 0.024, R2 = 0.322 ± 0.07)
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0 5 10 15 20 25 30 35
Chromosome length (Mbp)

0.0

0.2

0.4

0.6

0.8

1.0

cM
/1

00
Kb

p

Experimental
Predictions
Identity

Case
0
1
2
3

Case
0
1
2
3

0.0 0.2 0.4 0.6 0.8 1.0
Experimental recombination

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 p

re
di

ct
io

n

Case
0
1
2
3

r = 0.76 , R2 = 0.512r = 0.76 , R2 = 0.512

Chromosome 05 (r = 0.751 ± 0.047, R2 = 0.007 ± 0.157)

0 5 10 15 20 25 30
Chromosome length (Mbp)

0.0

0.2

0.4

0.6

0.8

1.0

cM
/1

00
Kb

p

Experimental
Predictions
Identity

Case
0
1
2
3

Case
0
1
2
3

0.0 0.2 0.4 0.6 0.8 1.0
Experimental recombination

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 p

re
di

ct
io

n
Case

0
1
2
3

r = 0.71 , R2 = 0.48r = 0.71 , R2 = 0.48

Chromosome 06 (r = 0.819 ± 0.02, R2 = 0.598 ± 0.058)

0 5 10 15 20 25 30
Chromosome length (Mbp)

0.0

0.2

0.4

0.6

0.8

cM
/1

00
Kb

p

Experimental
Predictions
Identity

Case
0
1
2
3

Case
0
1
2
3

0.0 0.2 0.4 0.6 0.8
Experimental recombination

0.0

0.2

0.4

0.6

0.8

M
od

el
 p

re
di

ct
io

n

Case
0
1
2
3

r = 0.832 , R2 = 0.67r = 0.832 , R2 = 0.67

Fig 8. Model correlation analysis in chromosomes 1 to 6.
Landscape and correlation between chromosomal recombination and model prediction
for rice chromosomes 1 to 6 (cross IR64 x Azucena).The identity criteria is included for
comparative purposes only. The colored bars at the bottom of the landscapes indicate

which case from the first step of the model is applied in each window.

December 31, 2021 14/19



Chromosome 07 (r = 0.772 ± 0.026, R2 = 0.511 ± 0.102)
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Chromosome 08 (r = 0.879 ± 0.016, R2 = 0.546 ± 0.179)
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Chromosome 09 (r = 0.814 ± 0.026, R2 = 0.565 ± 0.126)
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Chromosome 10 (r = 0.845 ± 0.024, R2 = 0.654 ± 0.065)
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Chromosome 11 (r = 0.769 ± 0.041, R2 = -0.009 ± 0.532)
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Chromosome 12 (r = 0.818 ± 0.025, R2 = 0.501 ± 0.173)
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Fig 9. Model correlation analysis in chromosomes 7 to 12.
Landscape and correlation between chromosomal recombination and model prediction
for rice chromosomes 7 to 12 (cross IR64 x Azucena).The identity criteria is included for
comparative purposes only. The colored bars at the bottom of the landscapes indicate

which case from the first step of the model is applied in each window.
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Despite the fact that cases two and three have a low incidence in the chromosomal 343

windows, they help to define particular areas that escape the action of the first case. 344

Note that, with respect to identity, the proposed model markedly increased the 345

correlation and the coefficient of determination, as shown in Fig 10. The average 346

increase in correlation, across all calibrations and tested chromosomes, is 0.256± 0.202, 347

meanwhile the increase in the coefficient of determination is 8.98± 4.741, being the gain 348

of prediction different for each chromosome. This gain is obtained because the different 349

steps of the model transform the identity values of each 100 Kbp window, which helps 350

to better represent peaks and valleys in the chromosomal arms and, in general, to define 351

the centromeric regions. The chromosomes with the highest prediction gains are those 352

whose identity in the centromeric region is greatest, with chromosome 5 being the most 353

extreme case, gaining 0.760 correlation points with respect to identity. Other 354

chromosomes such as 2, 3, and 12 gain approximately 0.37 correlation points, mainly 355

because the model help define the low recombination rates around the centromere. The 356

opposite case is observed in chromosome 9, where the average correlation gain is only 357

0.005. For this chromosome, the sequence identity is sufficient to describe 358

recombination rates, even approaching the mean correlation achieved by the model. 359
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Fig 10. Gains in model performance versus identity. Correlation and coefficient
of determination of identity criteria and model prediction with respect to recombination
rates from 12 rice chromosomes (IR64 x Azucena cross).

Chromosome 9 is unique with its telomeric centromere in rice and is treated 360

differently in the third step of the model, avoiding the centromere correction applied to 361

the other chromosomes. This special treatment is due to the existence of the Nucleolar 362

Organizer Region (NOR) in the short arm of the chromosome. The NOR of chromosome 363

9 is widely known to be a region where recombination is suppressed in rice [25], hence 364

the special centromere correction. However, the effect of this correction on the 365

chromosome 9 prediction is focused on the short arm only, and the prediction on the 366

long arm is completely determined by the other steps of the model. Although sequence 367

identity by itself can generate a high correlation with the recombination rate for this 368

cross (IR64 x Azucena) on chromosome 9, the predictive values of the model continue to 369

be preferred since the magnitude of the values is closer to those of recombination. 370

Finally, it should be noted that the model predictions reach a high correlation rate 371

for all the chromosomes evaluated, being able to reproduce the recombination landscape 372

of the crossing of the rice varieties IR64 and Azucena. 373
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Conclusion 374

The results presented in this paper showed that the proposed criteria for sequence 375

identity is strongly correlated with chromosomal recombination. The strength of this 376

correlation allowed us to propose a model based on window “identities”, which 377

accurately predicts recombination rates along the length of the chromosome. The model 378

is developed using data on the first chromosome of rice (accessions IR64 and Azucena). 379

It is cross-validated using the remaining eleven chromosomes. Across all 12 380

chromosomes, an average correlation of about 80% between experimental and prediction 381

rates is achieved. Similar results are found when model training is performed on other 382

chromosomes, being of great importance the gain in the determination coefficient. 383

Application of this model could allow predicting chromosome recombination 384

landscapes among rice varieties using only the parental genomes as a source. Such an 385

approach is particularly useful for breeding purposes, for it offers the potential to 386

optimize crossing experiments. In particular, model prediction could allow to identify 387

varieties that should better recombine than others with recipient genomes, and to 388

uncover recombination hot spots of vertical gene transfer. We hope that the proposed 389

model will help breeders to reduce costs and execution times of crossing experiments. 390

Finally, we hope to see other research studies extending the proposed methodology to 391

other rice varieties, to other cereal species and even other plant and animal organisms. 392

Supporting information 393

S1 File. Experimental recombination. Experimental recombination values for the 394

12 rice chromosomes, Azucena x IR64 cross, in 100 kbp windows. 395
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