EPIPLANT 2022

22-24 June 2022, Banyuls-sur-mer, France

I hereby certify that JENNY JOHANA GALLO has participated in the

above mentioned international conference.

Perpignan, September 1, 2022

Guillaume MOISSIARD For the Local Scientific Committee

INA

P frontiers in Plant Science

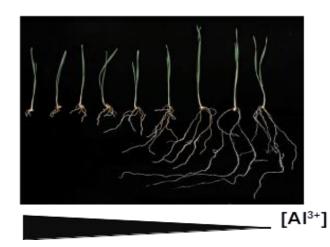
diagenode Innovating Epigenetics Solutions Whole-genome DNA methylation patterns of *Oryza sativa* (L.) and *Oryza glumaepatula* (Steud) genotypes associated with aluminum response

Jenny Johana Gallo-Franco, Thaura Ghneim-Herrera, Fabián Tobar-Tosse, Miguel Ángel Romero, Juliana Chaura & Mauricio Alberto Quimbaya

EpiPlant 2022

¿ Why study aluminum toxicity ?

- Aluminum (Al) is the third **most common** element in the world (~ 7%)


- When the **pH of the soil** is below 5, it becomes its most toxic form Al³⁺

- Most of the **cereals** around the world such as corn, wheat and rice, grow in acid soils and are exposed to the Al³⁺ toxicity, which **inhibits** the **plants development**.

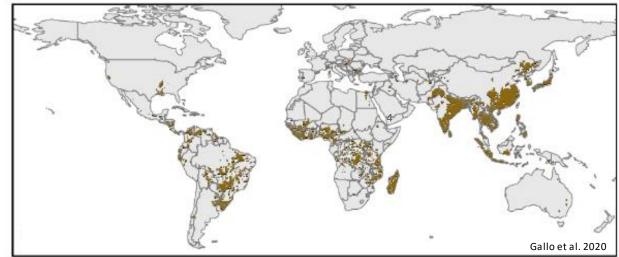
+AI

-AI

¿ Why study the methylome of rice crops?

Rice is an important crop that represents the **food security** of more than half of the world's population.

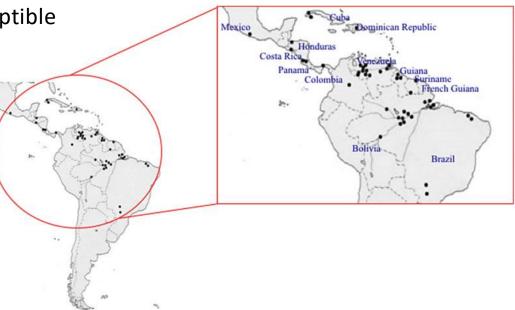
Class: Monocotyledoneae Order: Poales Family: Poaceae Tribe: Oryzeae Gender: Oryza

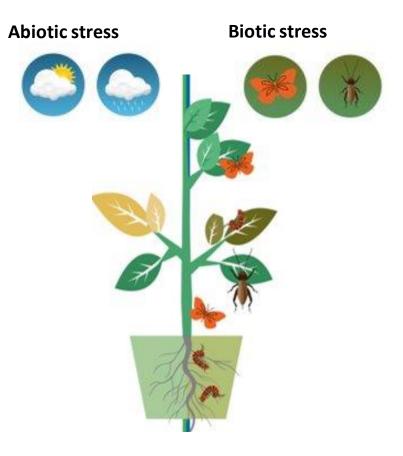


¿ Why study the methylome of rice crops?

Model organism for evolutionary and molecular studies in cereals and monocotyledonous plants.

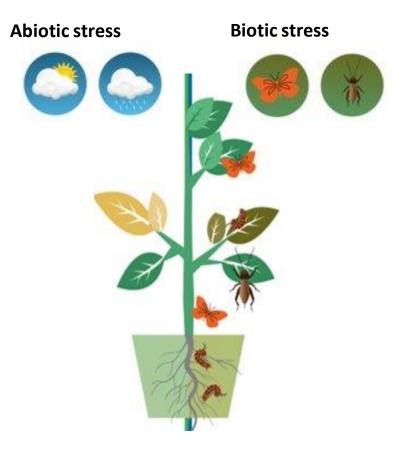
Oryza sativa is the most Al tolerant crop.


Class: Monocotyledoneae Order: Poales Family: Poaceae Tribe: Oryzeae Gender: Oryza


¿Why Oryza glumaepatula?

Potential source of Al³⁺ tolerant varieties

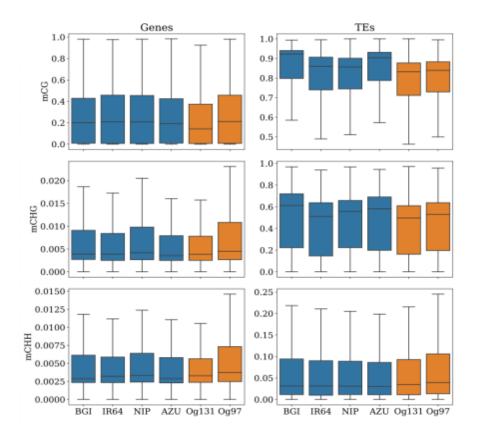
- Wild type rice species
- Endemic from Center and South America
- Unknown tolerance mechanisms to AI^{3+}
- Biological collection in the Icesi University (Cali-Colombia)
- 65 accessions of tolerant and susceptible *O. glumepatula* genotypes



Plants can respond and adapt to environmental conditions

Are there differences in methylation patterns between cultivated and rice wild species?

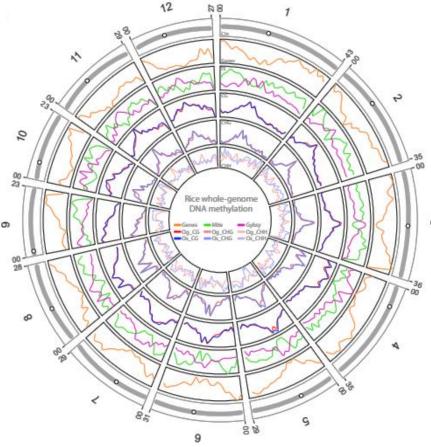
Are there pre-established methylation patterns associated with the **aluminum stress** response in tolerant and susceptible rice genotypes?


Are they different **between rice species**?

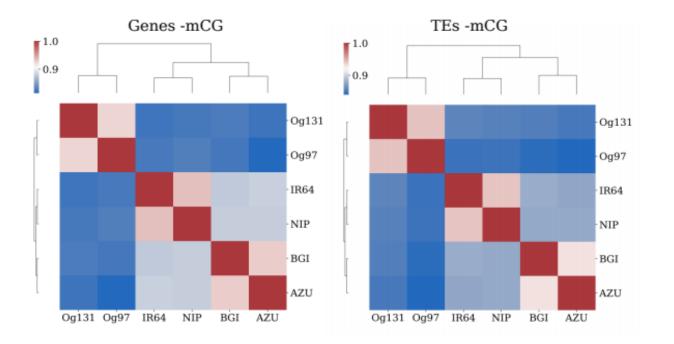
Experimental design

Seeds selection and desinfection	Germinati	on Hydroponic Culture Kimura 3 weeks	B Roots collect
			DNA Extraction
O, sativa	Genotype Azucena	Response to AI3+ Tolerant	
0. sativa 0. sativa	Nipponbare	Tolerant	
O. sativa O. sativa	BGI IR64	Susceptible Intermidiate	Whole genome
O. glumaepatula	Og97	Tolerant	bisulfite sequencing
O. glumaepatula	Og131	Susceptible	Illumina

Genome-wide DNA methylation patterns in cultivated and wild rice

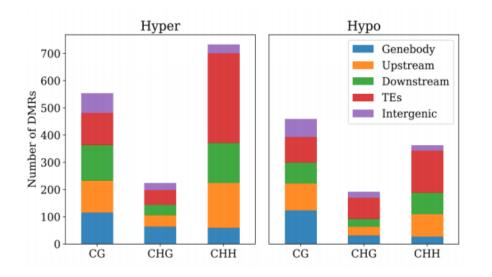

Methylation patterns associated with genes and TEs for both rice species are conserved.

DNA methylation profiles of genes and TEs in rice


	Genes	Mite	Gypsy	Os_CG	Og_CG	Os_CHG	Og_CHG	Os_CHH	Og_CHH
Genes	1.00	0.51	-0.59	-0.85	-0.82	-0.81	-0.76	0.54	-0.16
Mite	0.51	1.00	-0.49	-0.60	-0.57	-0.64	-0.60	0.56	0.07
Gypsy	-0.59	-0.49	1.00	0.69	0.67	0.72	0.68	-0.40	0.21
Os_CG	-0.85	-0.60	0.69	1.00	0.95	0.92	0.85	-0.63	0.13
Og_CG	-0.82	-0.57	0.67	0.95	1.00	0.88	0.90	-0.59	0.20
Os_CHG	-0.81	-0.64	0.72	0.92	0.88	1.00	0.93	-0.51	0.26
Og_CHG	-0.76	-0.60	0.68	0.85	0.90	0.93	1.00	-0.46	0.34
Os_CHH	0.54	0.56	-0.40	-0.63	-0.59	-0.51	-0.46	1.00	0.38
Og_CHH	-0.16	0.07	0.21	0.13	0.20	0.26	0.34	0.38	1.00

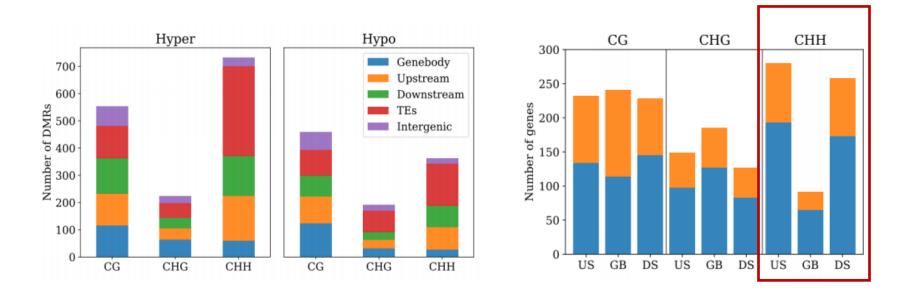
Positive correlation between the methylation level and density of Gypsy TEs.

Negative correlation between the methylation level and density of Mite TEs and genes.

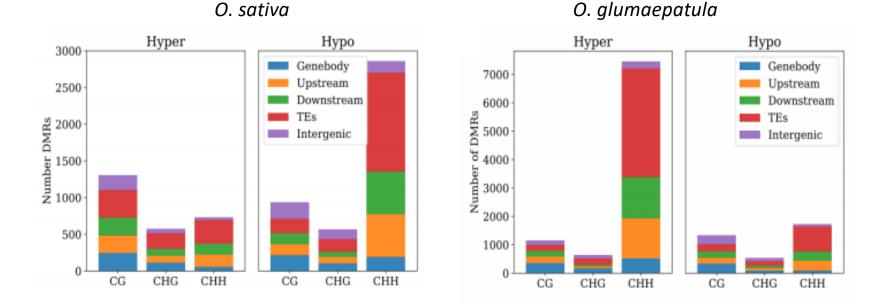

Differential methylation patterns between cultivated and wild rice

There is a differentiation of the methylome according to the rice species

Differential methylation patterns between cultivated and wild rice


There are several genomic regions with species-specific methylation patterns, reflecting the own evolutionary histories of *O. sativa* and *O. glumaepatula*

We found two genes related to domestication processes in rice: FRIZZI PANICLE-FZP and SCENTED KERNEL-SK2

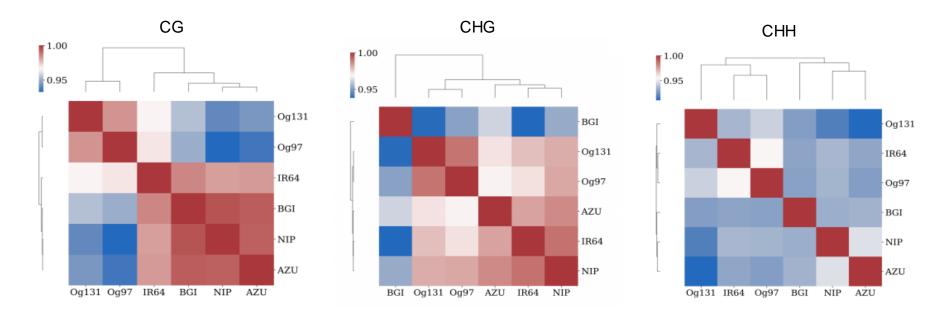

Differential methylation patterns between cultivated and wild rice

There are several genomic regions with species-specific methylation patterns, reflecting the own evolutionary histories of *O. sativa* and *O. glumaepatula*

We found two genes related to domestication processes in rice: FRIZZI PANICLE-FZP and SCENTED KERNEL-SK2

Differential methylation patterns associated with Al-tolerance: a comparison between wild and cultivated rice

Several DMRs are related to genes involved in Al-tolerance in rice according to Arbelaez *et al.*, (2017) and Arenhart *et al.*, (2014).


DMR-associated genes related to Al-tolerance shared between rice species

		O. sativa		O. glumaepatula		
Gene ID	Location	Status	Context	Location	Status	Context
Os01g0949900	Upstream	Нуро	CHH	Upstream	Hyper	CHH
Os01g0639600	Upstream	Нуро	CHH	Upstream	Hyper	CHH
Os12g0210500	Upstream	Нуро	CHH	Genebody	Нуро	CHH
	Genebody	Нуро	CHH			
Os02g0186800	Upstream	Нуро	CHH	Upstream	Hyper	CHH
Os05g0472400	Upstream	Нуро	CHH	Genebody	Нуро	CHH
	Genebody	Нуро	CHH	Downstream	Hyper	CHH
Os08g0158200	Genebody	Hyper	CHG	Genebody	Hyper	CHG
Os07g0509800	Genebody	Hyper	CHH	Genebody	Hyper	CHH
Os01g0609300	Genebody	Нуро	CG	Genebody	Нуро	CG
				Upstream	Hyper	CHH
Os11g0134900	Genebody	Нуро	CHG	Genebody	Нуро	CHG
Os01g0597800	Downstream	Hyper	CG	Upstream	Hyper	CHH
Os10g0459300	Downstream	Нуро	CHH	Downstream	Hyper	CHH

Common DMR-associated genes for *O. sativa* and *O. glumaepatula* according to Arbelaez *et al.,* (2017) and Arenhart *et al.,* (2014).

Methylation patterns of TEs close to Al-response genes

79 TEs were associated with a DMRs in *O. glumaepatula* and 70 TEs in *O. sativa*.

Conclusions

- The methylation patterns associated with genes and TEs for both rice species are conserved.
- There is a positive correlation between the methylation level and the density of Gypsy TEs. But a negative correlation was found between the methylation level and the density of Mite TEs and genes.
- There exist several genomic regions with species-specific methylation patterns, reflecting the own evolutionary histories of *O. sativa* and *O. glumaepatula*.
- There are several regions potentially regulated through epigenetics that are related to Al-tolerance in rice.

Aliados (NIAB intelector) FEDERACIÓN NACIONAL DE ARROCEROS cenicaña International Center for Tropical Agriculture Since 1967 Science to cultivate change Caltech 東京大学 THE UNIVERSITY OF TOKYO **I**ILLINOIS GHENT UNIVERSITY Pontificia Universidad AVERIANA Universidad de Universidad UNIVERSIDAD ICESI Pontificia Universidad Cali los Andes AVERIANA de Ibagué Bogoti **IES** Ancla Colombia UNIVERSIDAD UNIVERSIDAD DEL QUINDÍO **DE LOS LLANOS** Apoyan

> Gobierno de Colombi

COLOMBIA

A

El futuro

es de todos

References

- Arbelaez, J. D., Maron, L. G., Jobe, T. O., Piñeros, M. A., Famoso, A. N., Rebelo, A. R., Singh, N., Ma, Q., Fei, Z., Kochian, L. V., & McCouch, S. R. (2017). ALUMINUM RESISTANCE TRANSCRIPTION FACTOR 1 (ART1) contributes to natural variation in aluminum resistance in diverse genetic backgrounds of rice (O. sativa). Plant Direct, 1(4), e00014. https://doi.org/10.1002/pld3.14

- Arenhart, R. A., Bai, Y., Valter de Oliveira, L. F., Bucker Neto, L., Schunemann, M., Maraschin, F. dos S., Mariath, J., Silverio, A., Sachetto-Martins, G., Margis, R., Wang, Z.-Y., & Margis-Pinheiro, M. (2014). New Insights into Aluminum Tolerance in Rice: The ASR5 Protein Binds the STAR1 Promoter and Other Aluminum-Responsive Genes. Molecular Plant, 7(4), 709-721. https://doi.org/10.1093/mp/sst160

- Famoso, A. N., Clark, R. T., Shaff, J. E., Craft, E., McCouch, S. R., & Kochian, L. V. (2010). Development of a Novel Aluminum Tolerance Phenotyping Platform Used for Comparisons of Cereal Aluminum Tolerance and Investigations into Rice Aluminum Tolerance Mechanisms. *Plant Physiology*, *153*(4), 1678-1691. https://doi.org/10.1104/pp.110.156794

- Gallo-Franco, J. J., Sosa, C. C., Ghneim-Herrera, T., & Quimbaya, M. (2020). Epigenetic Control of Plant Response to Heavy Metal Stress: A New View on Aluminum Tolerance. *Frontiers in Plant Science*, *11*, 602625. https://doi.org/10.3389/fpls.2020.602625