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Introduction

¢ Why study aluminum toxicity ?

- Aluminum (Al) is the third most
common element in the world (~ 7%)

- When the pH of the soil is below 5,
it becomes its most toxic form AlR*

- Most of the cereals around the
world such as corn, wheat and rice,
grow in acid soils and are exposed to
the AI3* toxicity, which inhibits the
plants development.
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Famoso et al. 2010




Introduction

Class: Monocotyledoneae
Order: Poales

Family: Poaceae

Tribe: Oryzeae

Gender: Oryza

¢ Why study the methylome of rice crops?

Rice is an important crop that represents the food
security of more than half of the world's population.

Galloetal.2020




Introduction

Class: Monocotyledoneae
Order: Poales

Family: Poaceae

Tribe: Oryzeae

Gender: Oryza

¢ Why study the methylome of rice crops?

Model organism for evolutionary and molecular
studies in cereals and monocotyledonous plants.

Oryza sativa is the most Al tolerant crop.

Galloetal.2020




Introduction

¢Why Oryza glumaepatula?

Potential source of Al3* tolerant varieties

- Wild type rice species

- Endemic from Centerand South America

- Unknown tolerance mechanisms to Al3*

- Biological collectionin the Icesi University (Cali-

Colombia)
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Introduction

Plants can respond and adapt to environmental conditions

Abiotic stress Biotic stress




Introduction

Plants can respond and adapt to environmental conditions

Abiotic stress Biotic stress

Are there differences in methylation
patterns between cultivated and rice wild 0 Q ‘ .
species?
Are there pre-established methylation
patterns associated with the aluminum

stress response in tolerant and
susceptible rice genotypes?

Are they different betweenrice species?




Materials and Methods

Experimental design

p
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Results

Genome-wide DNA methylation patterns in cultivated and wild rice
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Methylation patternsassociated with genes and TEs for both rice
species are conserved.



Results

DNA methylation profiles of genes and TEs in rice
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Results

Differential methylation patterns between cultivated and wild rice
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There is a differentiation of the methylome according to the rice species



Results

Number of DMRs

Differential methylation patterns between cultivated and wild rice

There are several genomic regions with species-specific methylation patterns,
reflecting the own evolutionary histories of O. sativa and O. glumaepatula
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We found two genes related to domestication processes in rice: FRIZZI
PANICLE-FZP and SCENTED KERNEL-SK2
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Number of DMRs

Differential methylation patterns between cultivated and wild rice

There are several genomic regions with species-specific methylation patterns,

reflecting the own evolutionary histories of O. sativa and O. glumaepatula
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We found two genes related to domestication processes in rice: FRIZZI

PANICLE-FZP and SCENTED KERNEL-SK2




Results
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Differential methylation patterns associated with Al-tolerance:
a comparison between wild and cultivated rice
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Several DMRs are related to genes involved in Al-tolerancein rice
accordingto Arbelaezet al., (2017) and Arenhart et al., (2014).



Results

DMR-associated genes related to Al-tolerance shared between rice species

0. sativa 0. glumaepaiula

Gene 1D Location Status Context Location Status Context
Os01g0949500 Upstream Hypo CHH Upstream Hyper CHH
Os01g0639600 Upstream Hypo CHH Upstream Hyper CHH
Os12g0210500 Upstream Hypo CHH Genebody Hypo CHH

Genebody Hypo CHH
Os02g0186800 Upsiream Hypo CHH Upstream Hyper CHH
Os05g0472400 Upstream Hypo CHH Genebody Hypo CHH

Genebody Hypo CHH Downstream Hyper CHH
Os08g0158200 Genebody Hyper CHG Genebody Hyper CHG
Os07g0509800 Genebody Hyper CHH Genebody Hyper CHH
Os01g0609300 Genebody Hypo CG Genebody Hypo CG

Upstream Hyper CHH

Os11g0134900 Genebody Hypo CHG Genebody Hypo CHG
Os01g0597800 Downstream Hyper CG Upstream Hyper CHH
Ds10g0459300 Downsiream Hypo CHH Downsiream Hyper CHH

Common DMR-associated genes for O. sativa and O. glumaepatula according
to Arbelaezet al., (2017) and Arenhart et al., (2014).



Results
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Methylation patterns of TEs close to Al-response genes

79 TEs were associated with a DMRs in O. glumaepatula and
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Results

Conclusions

The methylation patternsassociated with genes and TEs for both rice
species are conserved.

There is a positive correlation between the methylation level and the
density of Gypsy TEs. But a negative correlation was found between
the methylationlevel and the density of Mite TEs and genes.

There exist several genomic regions with species-specific methylation
patterns, reflecting the own evolutionary histories of O. sativa and O.
glumaepatula.

There are several regions potentially regulated through epigenetics
that are related to Al-tolerancein rice.
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