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Introduction

Why study aluminum toxicity ?

- Aluminum (Al) is the third most
common element in the world (~
7%)

- When the pH of the soil is below
5, it becomes its most toxic form Al3*

- Most of the cereals around the
world such as corn, wheat and rice,
grow in acid soils and are exposed to
the Al3+toxicity, which inhibits the
plants development.

P ———

Famoso et al. 2010



Introduction

¥
W s W)
ff
4

Class: Monocotyledoneae
Order: Poales

Family: Poaceae

Tribe: Oryzeae

Gender: Oryza

Why study the methylome of rice crops?

Rice is an important crop that represents the food
security of more than half of the world's population.

Gallo et al. 2020




Introduction

Class: Monocotyledoneae
Order: Poales

Family: Poaceae

Tribe: Oryzeae

Gender: Oryza

Why study the methylome of rice crops?

Model organism for evolutionary and molecular
studies in cereals and monocotyledonous plants.

Oryza sativa is the most Al tolerant crop.
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Introduction

Why Oryza glumaepatula?
Potential source of Al3* tolerant varieties

- Wild type rice species
- Endemic from Center and South America
- Unknown tolerance mechanisms to Al3+

- Biological collection in the Icesi University

(Cali-Colombia)
- 65 accessions of tolerant and susceptible

O. glumepatula genotypes
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Introduction

Plants can respond and adapt to environmental
conditions

Abiotic stress Biotic stress
- Genetic information
- Signal transduction o Q . .
- Modulation of transcription
- Epigenetics

4

DNA and histone modifications which do
not affect the DNA sequence, that are stable
and heritable




Introduction

Plants can respond and adapt to environmental

conditions

How are DNA methylation patterns
affected by aluminum stress in rice?

Are there differences between cultivated
and rice wild species?

Are there differences between tolerant
and susceptible species?

Abiotic stress Biotic stress
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Materials and Methods

Experimental design
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Results

Genome-wide DNA methylation patterns in cultivated and wild rice
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General methylation patterns for both rice species are conserved
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Proportion

Where are located the DMRs along the genome for O. sativa?
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There is a pattern of variation in the genome



Results

Number of genes
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Results

DMR-associated genes previously reported as aluminum-responsive genes
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Hypo-methylated CHH

Azucena and Og131
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DMR-associated genes previously reported as aluminum-responsive genes
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DMR-associated genes previously reported as aluminum-responsive genes
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Results

DMR-associated genes previously reported as aluminum-responsive genes
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Conclusions

Conclusions and perspectives

The methylation patterns associated with genes and TEs for both rice
species are conserved.

General hypo-methylation landscape under aluminum exposure in rice.

The pattern of distribution of DMRs along the genome is similar for all the
varieties analyzed

There are genes potentially regulated through epigenetics that have been
previously related to Al-tolerance in rice.

Do these changes in methylation patterns affect gene expression?
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Results

DMR-associated genes previously reported as aluminum-responsive genes

OsFRDL4 encodes a multidrug and toxin

- OsFRDLA4
Hypo-methylated CG ~ ====$  extrusion (MATE) transporter that mediates root
Ogl3l citrate release (Yokosho et al., 2011)

- OsALMT4 Al-activated release of organic acids from
the root is a major physiological mechanism

Hypo-methylated CG
Ogl131 : :
of plant Al resistance (Kochian et al., 2015)

- STAR1
Hypo-methylated CHH

Azucena and Og131



Results

DMR-associated genes previously reported as aluminum-responsive genes

- OsFRDL4
Hypo-methylated CG
Ogl31
- OsALMT4 Aluminum-activated malate transporter (ALMT)
Hypo-methylated CG — family genes encode anion channels in plants
Ogl31
OsALMT4 protein localizes to the plasma
membrane. Overexpression of OSALMT4 can
- STAR1 increase the efflux of malate in rice roots and the Al

Hypo-methylated CHH tolerance

Azucena and Og131



Results

DMR-associated genes previously reported as aluminum-responsive genes

- OsFRDL4
Hypo-methylated CG
Ogl31

- OSALMT4
Hypo-methylated CG

Ogl31
STAR1 and STAR2 encode an ATP-binding domain

and a membrane-binding domain, respectively.

- STAR1
Hypo-methylated CHH ====% The STAR1-STAR2 complex localizes at the vesicles

Azucena and Og131 and transports UDP-glucose, which may be involved
in cell wall modification, resulting in decreased Al
accumulation in the cell wall (Huang et al, 2012).



Results

DMR-associated genes previously reported as aluminum-responsive genes

-OsNRAMP6
Hypo-methylated
CHH for BGIl and Og131

Nramp family members function as proton-coupled
metal ion transporters that can transport Mn2+,
Zn2+, Cu2+, Fe2+, Cd2+, Ni2+, Co2+, and Al3+

-OsNRAMP3 (Nevo and Nelson, 2006; Xia et al., 2010)

Hypo-methylated
CG, CHG, CHH Og131

Hyper-methylated
CG for BGI

-OsNRAMP4 (Nratl)
Hyper-methylated
CG ogl3l



Results

DMR-associated genes previously reported as aluminum-responsive genes

-OsNRAMP6
Hypo-methylated
CHH for BGI and Og131

Nramp family members function as proton-coupled
metal ion transporters that can transport Mn2+,
Zn2+, Cu2+, Fe2+, Cd2+, Ni2+, Co2+, and Al3+

-OsNRAMP3 (Nevo and Nelson, 2006; Xia et al., 2010)

Hypo-methylated
CG, CHG, CHH Og131

Hyper-methylated

CG for BGI
Nratl transports trivalent Al (Xia et al, 2010),

-OsNRAMP4 (Nratl) —_— which is required for sequestration of Al into
Hyper-methylated the vacuoles for final detoxification.
CG ogl3l
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