Genome-wide bisulfite sequencing analysis of cultivated and wild rice species reveals epigenome variation in response to aluminum stress

Jenny Johana Gallo-Franco*, Thaura Ghneim-Herrera, Fabián Tobar-Tosse, Mauricio Alberto Quimbaya *jennygallof@javerianacali.edu.co

ISCB Latin America 2022

Why study aluminum toxicity ?

- Aluminum (Al) is the third **most common** element in the world (~ 7%)

- When the **pH of the soil** is below 5, it becomes its most toxic form AI^{3+}

- Most of the **cereals** around the world such as corn, wheat and rice, grow in acid soils and are exposed to the Al³⁺ toxicity, which **inhibits** the **plants development.**

+AI

-AI

Why study the methylome of rice crops?

Rice is an important crop that represents the **food security** of more than half of the world's population.

Class: Monocotyledoneae **Order:** Poales **Family:** Poaceae **Tribe:** Oryzeae **Gender:** Oryza

Why study the methylome of rice crops?

Model organism for evolutionary and molecular studies in cereals and monocotyledonous plants.

Oryza sativa is the most Al tolerant crop.

Class: Monocotyledoneae **Order:** Poales **Family:** Poaceae **Tribe:** Oryzeae **Gender:** Oryza

Why Oryza glumaepatula?

Potential source of Al³⁺ tolerant varieties

- Wild type rice species
- Endemic from Center and South America
- Unknown tolerance mechanisms to AI^{3+}
- Biological collection in the Icesi University (Cali-Colombia)
- 65 accessions of tolerant and susceptible *O. glumepatula* genotypes

Plants can respond and adapt to environmental conditions

- Genetic information
- Signal transduction
- Modulation of transcription
- Epigenetics

DNA and histone modifications which do not affect the DNA sequence, that are stable and heritable

Plants can respond and adapt to environmental conditions

How are DNA methylation patterns affected by **aluminum stress** in rice?

Are there differences between cultivated and rice wild species?

Are there differences between **tolerant** and susceptible species?

88	Species	Genotype	Response to AI3+
90 1	O. sativa	Azucena	Tolerant
	O. sativa	BGI	Susceptible
	O. glumaepatula	Og97	Tolerant
	O. glumaepatula	Og131	Susceptible

Hypo-DMR

Genome-wide DNA methylation patterns in cultivated and wild rice

General methylation patterns for both rice species are conserved

Number of differentially methylated regions under aluminum stress conditions

Hypomethylation under stress conditions

- Mainly Hypo-methylation for CHH sequence context

- Higher number of DMRs in the wild species
- Mainly Hypo-methylation for tolerant varieties

Where are located the DMRs along the genome for O. sativa?

Similar trend between hyper and hypo-methylation Similar trend between tolerant and susceptible varieties

Where are located the DMRs along the genome for O. sativa?

Oryza glumaepatula

Similar trend between hyper and hypo-methylation Similar trend between tolerant and susceptible varieties

There is a pattern of variation in the genome

DMR-associated genes for O. sativa and O. glumaepatula

15 hyper-methylated genes for both *o. sativa* and *o. glumaepatula*

384 hypo-methylated genes

for both *o. sativa* and *o. glumaepatula*

Hyper-methylation in the CG context and hypo-methylation in the CHH context

- OsFRDL4 Hypo-methylated CG Og131

- OsALMT4 Hypo-methylated CG Og131

- OsFRDL4 Hypo-methylated CG Og131

- OsALMT4 Hypo-methylated CG Og131

- OsFRDL4 Hypo-methylated CG Og131

- OsALMT4 Hypo-methylated CG Og131

-OsNRAMP6 Hypo-methylated CHH for BGI and Og131

-OsNRAMP3 Hypo-methylated CG, CHG, CHH Og131

Hyper-methylated CG for BGI

-OsNRAMP4 - Nrat1 Hyper-methylated CG og131

Conclusions and perspectives

- The methylation patterns associated with genes and TEs for both rice species are conserved.
- General hypo-methylation landscape under aluminum exposure in rice.
- The pattern of distribution of DMRs along the genome is similar for all the varieties analyzed
- There are genes potentially regulated through epigenetics that have been previously related to Al-tolerance in rice.
- Do these changes in methylation patterns affect gene expression?

Acknowledgments

Acknowledgments

References

Liu et al., J. Liu, M.X. Zhou, E. Delhaize, P.R. Ryan (2017). Altered expression of a malatepermeable anion channel, OsALMT4, disrupts mineral nutrition Plant Physiol, 175 (4) (2017), pp. 1745-1759

Nevo, Y., and Nelson, N. (2006). The NRAMP family of metal-ion transporters. Biochim. Biophys. Acta 1763: 609–620.

Xia, J., Yamaji, N., Kasai, T., and Ma, J.F. (2010). Plasma membrane-localized transporter for aluminum in rice. Proc. Natl. Acad. Sci. USA 107: 18381–18385.

- OsFRDL4 Hypo-methylated CG Og131 **OsFRDL4** encodes a multidrug and toxin extrusion (MATE) transporter that mediates root citrate release (Yokosho et al., 2011)

- OsALMT4 Hypo-methylated CG Og131

Al-activated release of organic acids from the root is a major physiological mechanism of plant Al resistance (Kochian et al., 2015)

- OsFRDL4 Hypo-methylated CG Og131

- OsALMT4 Hypo-methylated CG Og131

Aluminum-activated malate transporter (ALMT)

family genes encode anion channels in plants

- **STAR1** Hypo-methylated CHH Azucena and Og131 OsALMT4 protein localizes to the plasma membrane. Overexpression of OsALMT4 can increase the efflux of malate in rice roots and the Al tolerance

- OsFRDL4 Hypo-methylated CG Og131

- OsALMT4 Hypo-methylated CG Og131

- STAR1

Hypo-methylated CHH Azucena and Og131 **STAR1** and **STAR2** encode an ATP-binding domain and a membrane-binding domain, respectively.

The STAR1-STAR2 complex localizes at the vesicles and transports UDP-glucose, which may be involved in cell wall modification, resulting in decreased Al accumulation in the cell wall (Huang et al, 2012).

-OsNRAMP6

Hypo-methylated CHH for BGI and Og131

-OsNRAMP3

Hypo-methylated CG, CHG, CHH Og131

Hyper-methylated CG for BGI

-OsNRAMP4 (Nrat1) Hyper-methylated CG og131 Nramp family members function as proton-coupled metal ion transporters that can transport Mn2+, Zn2+, Cu2+, Fe2+, Cd2+, Ni2+, Co2+, and Al3+ (Nevo and Nelson, 2006; Xia et al., 2010)

-OsNRAMP6 Hypo-methylated CHH for BGI and Og131

-OsNRAMP3 Hypo-methylated CG, CHG, CHH Og131

Hyper-methylated CG for BGI

-OsNRAMP4 (Nrat1) Hyper-methylated CG og131

Nramp family members function as proton-coupled metal ion transporters that can transport Mn2+, Zn2+, Cu2+, Fe2+, Cd2+, Ni2+, Co2+, and Al3+ (Nevo and Nelson, 2006; Xia et al., 2010)

 \rightarrow

Nrat1 transports trivalent Al (Xia et al, 2010), which is required for sequestration of Al into the vacuoles for final detoxification.