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Why study aluminum toxicity ?

- Aluminum (Al) is the third most 
common element in the world (~ 
7%)

- When the pH of the soil is below 
5, it becomes its most toxic form Al3+ 

- Most of the cereals around the 
world such as corn, wheat and rice, 
grow in acid soils and are exposed to 
the Al3+ toxicity, which inhibits the 
plants development.

Famoso et al. 2010
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Why study the methylome of rice crops?

Gallo et al. 2020
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Rice is an important crop that represents the food 
security of more than half of the world's population.
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Class: Monocotyledoneae 
Order: Poales
Family: Poaceae
Tribe: Oryzeae
Gender: Oryza
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Model organism for evolutionary and molecular 
studies in cereals and monocotyledonous plants.

Oryza sativa is the most Al tolerant crop. 

Why study the methylome of rice crops?

Gallo et al. 2020
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Why Oryza glumaepatula? 
Potential source of Al3+ tolerant varieties

- Wild type rice species  
- Endemic from Center and South America
- Unknown tolerance mechanisms to Al3+ 
- Biological collection in the Icesi University 
(Cali-Colombia) 
- 65 accessions of tolerant and susceptible
 O. glumepatula genotypes
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Abiotic stress Biotic stress

Plants can respond and adapt to environmental 
conditions 

- Genetic information
- Signal transduction
- Modulation of transcription
- Epigenetics

DNA and histone modifications which do
not affect the DNA sequence, that are stable

and heritable



How are DNA methylation patterns 
affected by aluminum stress in rice?

Are there differences between cultivated 
and rice wild species?

Are there differences between tolerant 
and susceptible species?
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Plants can respond and adapt to environmental 
conditions 

Abiotic stress Biotic stress
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Genome-wide DNA methylation patterns in cultivated and wild rice

General methylation patterns for both rice species are conserved
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- Mainly Hypo-methylation for CHH 
sequence context

- Higher number of DMRs in the wild 
species

- Mainly Hypo-methylation for tolerant 
varieties
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Similar trend between hyper and hypo-methylation

Similar trend between tolerant and susceptible varieties
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Similar trend between hyper and hypo-methylation

Similar trend between tolerant and susceptible varieties

There is a pattern of variation in the genome

Where are located the DMRs along the genome for O. sativa?

Oryza glumaepatula
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Hyper-methylation in the CG context and hypo-methylation in the CHH context

15 hyper-methylated genes  
for both o. sativa and o. 
glumaepatula  

384 hypo-methylated genes 
for both o. sativa and o. 
glumaepatula  

DMR-associated genes for O. sativa and O. glumaepatula
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-OsNRAMP6 
Hypo-methylated 
CHH for BGI and Og131

-OsNRAMP3 
Hypo-methylated 
CG, CHG, CHH Og131

Hyper-methylated
CG for BGI

-OsNRAMP4 - Nrat1 
Hyper-methylated 
CG og131

DMR-associated genes previously reported as aluminum-responsive genes
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Conclusions and perspectives
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- The methylation patterns associated with genes and TEs for both rice 
species are conserved.

- General hypo-methylation landscape under aluminum exposure in rice.

- The pattern of distribution of DMRs along the genome is similar for all the 
varieties analyzed

- There are genes potentially regulated through epigenetics that have been 
previously related to Al-tolerance in rice.

- Do these changes in methylation patterns affect gene expression?
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- OsFRDL4
Hypo-methylated CG 
Og131

- OsALMT4
Hypo-methylated CG 
Og131

- STAR1 
Hypo-methylated CHH 
Azucena and Og131

OsFRDL4 encodes a multidrug and toxin 
extrusion (MATE) transporter that mediates root 

citrate release (Yokosho et al., 2011)

Al-activated release of organic acids from 
the root is a major physiological mechanism 
of plant Al resistance (Kochian et al., 2015)



DMR-associated genes previously reported as aluminum-responsive genes
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- OsFRDL4
Hypo-methylated CG 
Og131

- OsALMT4
Hypo-methylated CG 
Og131

- STAR1 
Hypo-methylated CHH 
Azucena and Og131

Aluminum-activated malate transporter (ALMT) 
family genes encode anion channels in plants 

OsALMT4 protein localizes to the plasma 
membrane. Overexpression of OsALMT4 can 

increase the efflux of malate in rice roots and the Al 
tolerance



DMR-associated genes previously reported as aluminum-responsive genes
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- OsFRDL4
Hypo-methylated CG 
Og131

- OsALMT4
Hypo-methylated CG 
Og131

- STAR1 
Hypo-methylated CHH 
Azucena and Og131

STAR1 and STAR2 encode an ATP-binding domain 
and a membrane-binding domain, respectively.

The STAR1-STAR2 complex localizes at the vesicles 
and transports UDP-glucose, which may be involved 

in cell wall modification, resulting in decreased Al 
accumulation in the cell wall (Huang et al, 2012).
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Nramp family members function as proton-coupled 
metal ion transporters that can transport Mn2+, 
Zn2+, Cu2+, Fe2+, Cd2+, Ni2+, Co2+, and Al3+ 

(Nevo and Nelson, 2006; Xia et al., 2010)
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Nrat1 transports trivalent Al (Xia et al, 2010), 
which is required for sequestration of Al into 

the vacuoles for final detoxification.

Nramp family members function as proton-coupled 
metal ion transporters that can transport Mn2+, 
Zn2+, Cu2+, Fe2+, Cd2+, Ni2+, Co2+, and Al3+ 

(Nevo and Nelson, 2006; Xia et al., 2010)
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