Multiscale plant modelling and phenotyping in OpenAlea

> Simposio Omicas 2022 16-18 Noviembre

Christophe Pradal UMR AGAP Institute / Phenomen & Zenith, France

PhenoMen Team

AGAP Institute (Genetic Improvement and plant adaptation)

Montpellier, France

Phenotyping and Modeling of Plants in their Agro-climatic ENvironment (PhenoMEn)

Christine Christophe Granier Pradal

Michael Dingkhun Fabre

Ghanem

Grégory

Aguilar

Marcel

De Raissac

Sylvie Jaffuel

Benoit

Audebert

Plant and crop modeling

DATA SCIENCE

Plant plasticity and ideotype

ECOPHYSIOLOGY

Rebolledo

Frédéric Boudon

Lauriane Fernandez Rouan

Grégory Christophe Beurier

Myriam

Adam

Hélène

Marrou

Bertrand Muller

CIAT / Bioversity

D institut

Plant interactions and cropping systems

> **AGRONOMY** AGROECOLOGY

Raphael

Perez

Pradal

Alain

Multiscale Plant Modelling

Simulation

A diversity of modeling formalisms

Dynamical systems with dynamical structure (e.g. L-systems, Growth Grammar)

Process-based crop models

Complexity & retro-actions between scales

Multiscale crop & plant models

Functional-Structural Plant Models (FSPMs)

Functions

3D plant structure

Evers et al., 2011, TIPS

GreenLab, de Reffye et al, 2020, Ann. Bot.

Roles of Plant Structure (FSPM)

Plant structure as an interface

 Plant / environment interactions mainly depend on plant geometry (e.g. light interception)

Plant as a network

 Plant structure provides the support of fluxes (water, sugars) and signals (hormones, meca)

Plant as a developing organism

- Functional structural plant models (FSPM)

Godin & Sinoquet, 2005, New Phytol.

Why and how crop modeling and physiology can help?

- Knowledge on biological processes & their response to the environment
- Dynamics of yield elaboration (biomass, grain..)
- Interactions, trade-offs among processes difficult to look at experimentally
- Genotype X Environment X Management (GxExM)
- Yield & intermediates variables (stress indices: water, N...)
- Soil / Crop / Atmosphere

High-Throughput Phenotyping (HTP)

F. Tardieu, L. Cabrera-Bosquet, T. Pridmore T, M. Bennett (2017) Plant Phenomics, From Sensors to Knowledge. Current Biology 27(15):R770-R783

- Study the impact of different environmental conditions for various genotypes
- Quantify plants by Imaging
- Automatic High-throughput system
 - Imaging (12 sides & top view)
 - 250 GB/day
 - 10 TB/essay
 - 30 TB / year
 - Watering and whole-plant transpiration
 - Temperature + weight measured every day

Scientific Challenges

- Various models at different scales (FSPM & Crop models)
- Very fast **improvements** of Phenotyping (sensors, methods)

However,

-> How to integrate various multi-disciplinary models into a same platform?

-> How to **automate phenotyping** of 3D architecture and development at high-throughput on large panels?

- -> How to connect phenotyping & modelling (in-silico experiments)?
- -> How to **enhance model reuse** between modelling platforms?

Outline

- OpenAlea Software Platform
- HTP Shoot Phenotyping & Modelling
- HTP Root Architecture & Modelling
- Crop modelling framework interoperability

OpenAlea

- Domains
 - Plant modelling (FSPM)
 - Phenotyping

Solutions

- Integration framework
- Shared Foundations (Math, CS)
- Model repository & Modularity
- Reproducible computational experiment

Open Source Community

- Shared Governance
 - CIRAD, INRAE, inria
- Sharing models & formalisms
 - Github, Conda, Jupyter, L-GPL

OpenAlea Design Principles

- Language Centric (Python)
 - Common Modelling Language
 - Glue Language
- Component Architecture
 - Dynamic composition
- Scientific Workflows
 - Visual Programming
 - Automatic GUI generation
 - Distributed Computation
- Virtual Research Environment
 - Jupyter Lab, Binder, Docker
- Shared Development Tools
 - Test, Doc, Versioning (git), Cl, Deployment (conda)

Animation of the community

Modellers are not Computer Scientists!

Sprint

- Appear in OpenSource conferences (1st Hackathon OpenBSD 1999)
- Pair programming and Test Driven Development

Coding Sprint

- Math & Computer Scientists
- Duration : 3 days, From 10 to 20 developers
- One cycle = One task = ½ day

Modelling Sprint

- Modellers
- Model integration and informal training
- Foster collaborations

OpenAlea Architecture

Formalisms in OpenAlea

Multiscale **Topology** (MTG) (Pradal, Godin)

Multiscale Geometry (PlantGL) (Boudon, Pradal et al.)

Simulation Framework (L-Py) (Boudon et al., 2012)

Statistical Structural Analysis

MTG as a central « blackboard »

A catalog of Models as knowledge sources

Microclimate

(PIAF, Ecosys, LEPSE, AMAP) RATP, Caribu, Fractalysis

Plant / Pathogen (Ecosys, LEPSE, AGAP, itk) Septo3D, Alep, ECHAP

Architectural models

(LEPSE, AGAP, U3PF, ECOSYS, HortSys) Adel (wheat, Maize), Pea, Vine, Strawberry Apple, Mango

Plant Functions

(BPMP, LEPSE, AGAP, U3PF, ECOSYS, DIADE) C, N, Photosynthesis, Hydraulic CN-Wheat, HydroShoot, HydroRoot, ...

Visual Programming & Scientific Workflows

Scientific Workflows (swf) : ASAP

Automation

• swf to automate computational aspects of science

Scaling (exploit and optimize machine cycles)

- swf should make use of **parallel compute resources**
- swf should be able handle large data set

Abstraction, Evolution, Reuse (human cycles)

• swf should be easy to (re-)use, evolve, share

Provenance

- swf should capture processing history, data lineage
 - -> traceable data- and wf- evolution

Cuevas et al., 2012

Algebraic Scientific Workflows

- Control-flow using lambda-calculus
- Dataflow Variable (X)
 - Transform a dataflow into a function
- Algebraic Operator map, reduce, filter...

Pradal, Fournier, Valduriez, Cohen-Boulakia. SSDBM 2015

Higher-order Scientific Workflows

Pradal, Fournier, Valduriez, Cohen-Boulakia. SSDBM 2015

Outline

- OpenAlea software platform
- HTP Shoot Phenotyping & Modelling
- HTP Root Architecture & Modelling
- Crop modelling framework interoperability

HTP Platforms (Phenoarch - Montpellier)

Cabrera-Bosquet et al. 2016 New Phytologist

Analyses of **genetic determinisms** of plant **responses to environmental conditions** (drought, temperature and light)

- Capacity for **2400** plants (ca. 300 genotypes)
- Automated trait measurements

Symbols	Units	Traits	Type of area distribution
LA	m²	Plant leaf area	-
h _{stem}	cm	Stem height	vertical
θ	degrees	Plant inclination index	vertical & horizontal
rh _{PAD}	-	Plant relative height where half plant leaf area is reached	vertical
b _{PAD}	-	Distribution of leaf area along plant height	vertical
radius	cm	Plant radius	horizontal & vertical
σ _{az}	degrees	azimuths dispersion	horizontal
Δ _{row}	degrees	azimuth deviation from row	horizontal

Phenomenal: an automatic image analysis workflow

https://github.com/openalea/phenomenal

Leaf Position

Daviet, Fernandez et al., Plant Methods, in rev.

Tracking mature leaves as a multiple sequence alignment problem

Tracking organs over time

Automatic HT Measurements of traits

355 plants / 60 Genotypes x 42 dates under WW (blue) & WD (red) 237 K images analysed

Predicting state-variables by simulation

Estimating Light interception efficiency on a reconstructed canopy

Cabrera-Bosquet et al. 2016 New Phytol. Artzet et al., Plant Physiol., in rev.

→ Higher-order Scientific Workflows → Enhancing reproducibility (provenance)

PhenoArch, LEPSE, Montpellier

```
→ Grid & Cloud computing using 
OpenAlea
```

Plant Phenomics and Distributed Computing

• Coupling HTP analysis with biophysical models using Scientific Workflows

- → InfraPhenoGrid: An infrastructure for Phenotyping on the Grid
- → OpenAlea.Phenomenal: automatic 3D shoot reconstruction

Outline

- OpenAlea software platform
- HTP Shoot Phenotyping & Modelling
- HTP Root Architecture & Modelling
- Crop modelling framework interoperability

Time-lapse tracking and reconstruction of root system architecture

HIgh Resolution ROot Scanner (HIRROS) setup for automated and non-destructive visualization of root architecture of seedlings grown in agar plates IPSIM Montpellier P. Nacry / INRAe Fernande

Fernandez et al., Plant Methods, in rev.

Phenotyping root systems

→Imaging robots

 \rightarrow Possibility of time-lapse tracking

Automatic phenes extraction

Topological tracking: intuition

Complexity emerge... time after time

Topological tracking: intuition

Complexity emerge... time after time

Difference between two successive images

Topological tracking: intuition

Complexity emerge... time after time

Raw images

Region Adjacency Graph

Date map

The situation

O-Initial graph

1-Minimum directed spanning tree (Edmonds)

2-Keep only best successor

3-Min cost reconnection (Hungarian algorithm)

Results on complex data

Root Hydraulic Architecture: HydroRoot model

From a hydraulic unit to the whole root water transport (arabidopsis) Boursiac, Pradal, et al., Plant Physiology, 2022 https://github.com/openalea/hydroroot

Hydroroot Model: electrical analogy

Important hypotheses of our model:

- The diameter of the root is constant
- The radial hydraulic conductivity is constant
- Isotropic external water potential

Explicit linear solver using MTG Traversal

Model parametrisation: phenotyping vs simulation

Architecture: building up a root

Conductivities: adding water flow

Poiseuille's law

8hl *R* = $\overline{Dr^4}$

Reverse engineering of hydraulic architecture

Estimating radial conductivity by model inversion in hydropony on wild type and mutant

Boursiac, Pradal, et al., Plant Physiology, 2022

Extending Hydroroot: Modelling active and solute transport

Bauget et al., JXB, in rev.

Hydroshoot: Albasha et al., 2019, in silico Plants

Coupling Shoot / Root / Soil in Crop Mixtures

- Modelling Shoot-Shoot competition for light
- Modelling Root-Root competition for water/nutrient uptake
- Modelling Soil processes
 - Min3P: Gerard et al., 2008
 - STICS soil model : Brisson et al., 2006
- Simulating all together (Braghiere et al., 2020)

Gerard et al., 2008

Crop modelling framework interoperability

Crop2ML: https://crop2ml.org/

RECORD OpenAlea Record BioMA BIOMA DSSAT (Python, Fortran, C++, DSS C#, Java,...) SIMPLAC RECORD OpenAlea RECORD DSSA BIOMA

Crop2ML : Toward a common crop modelling language

Crop2ML

- Semantic and modular representation of crops models using a common language
 - a subset of Python (Cython)
- Model Unit with Algorithm in different languages
- Model Composition
- Automatic Import/Export to different platforms

https://github.com/AgriculturalModelExchangeInitiative/

Generic Model representation in Crop2ML with CyML

- Model specification: Framework independent conceptual model (XML-based description)
- Model algorithm: Formal rules to describe ecophysiological processes (Algorithms) or functions

Midingoyi et al., 2021, Env. Mod. & Soft.

Crop2ML : Model to model transformation

Midingoyi et al., 2020, *in silico plants* Midingoyi et al., 2022, *in prep*.

Automatic Model transformation

Take Home Message

- OpenAlea is an open source modelling community
- 3D Architecture & development can be capture by Phenotyping methods
- Functional Models can process either simulated or reconstructed architecture (in-silico experiments)
- There are connexions between plant and crop modelling communities
- Software reuse is key inside platforms (OpenAlea), but also between platforms (Crop2ML)

Research Challenges

- 1. Automatic field phenotyping
- 2. Semantic composition of FSPM and crop models
- 3. Deep Learning
 - **1. Automatic training** with 3D+t annotated synthetic data (topology/geometry)
 - 2. Physically-informed Neural Networks with process-based models
 - 3. Upscaling mechanistic models with meta-models

Questions?

O Edit on GitHub

https://github.com/openalea https://github.com/openalea-incubator https://github.com/openalea-training

https://openalea.rtfd.io