Predicted tertiary structure of the plant G-protein coupled receptor (GCR1) coupled with the Galpha Protein (GPA1), with and without ligands.

Pedro M. Hernández MSc., Dr. (C) Carlos A. Arango M., Ph.D. Andrés Jaramillo-Botero, Ph.D. Soo-Kyung Kim, Ph.D. William Goddard, Ph.D.

A comparative view of the signaling mechanism through the G-protein in animal and plant cells.

Gibberellin A1

required? Urano et al. Open biology. 2013;3: 120186. (image source)

ation of alpha subunit: Johnston et al. 2007. Proceedings of the National Academy of Sciences of the United States of America, 104(44) > putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and time to flowering. Colucci et al. 2002. Proceedings of the National Academy of Sciences.

3PA1 coupling regulates nitrate, cell wall, immunity and light responses in Arabidopsis. Chakraborty et al. 2019.

We propose that GCR1 could help regulate the GP

A comparative view between networks found in animal GPCRs and GCR1

Synergistic activity of RGS1 and GCR1 regulating the G-protein signaling pathway

Although RGS1 is a regulatory protein of GPA1, GCR1 is needed to keep the inactivation on the GP

Several active states per GPCR: Gray et al. Proceedings of the National Academy of Sciences of the United States of America 2014 Jan 7,;111(1):12.

Evidence of heterotrimer signalling in plants: Chen et al. PLANT PHYSIOLOGY 2006, 141(3)

GCR1 internalization: Pandey and Assmann The Plant Cell, , 2004. 16(6)

CR1 and GPA1 regulate DNA synthesis through PI-PLC activation and IP₃ and DAG production. Apone et al. PLANT PHYSIOLOGY, 2003. 133(2)

Futile cycle

Is RGS1 hyper-activated?

Prediction of the starting tertiary structure of GCR1 from its primary sequence

(a): Plant based: eta residues, hydrophobic centers, helix size

GCR1 has no crystal structure, we predicted its tertiary structure using GEnSeMBLE complete sampling

Prediction of TM regions

we found that PE2R3 is the best template to generate the initial GCR1 structure.

Prediction of the tertiary structure of GCR1 from its primary sequence

	Theta							Phi							Eta							Source	I Energies		I Ranks		Comb Ranks				
Best SBH	H1	H2	H3	H4	H5	H6	H7	H1	H2	H3	H4	H5	H6	H7	H1	H2	H3	H4	H5	H6	H7	BiHelix	CInterH	NIntraH	rCi	rNi	rCNi	active	inactive	Act-Inac	Class A Cont
1SBiH	-10	0	-10	0	10	-10	-10	15	-15	-30	30	-30	30	15	30	-15	-30	30	30	-30	15	15bBH	-787.343	218.851	3	2	2.5	2	0	2	3
2SBiH	-10	0	-10	0	10	-10	0	30	-15	-30	30	-30	30	30	30	-15	-30	30	30	-30	15	15bBH	-783.271	243.569	4	3	3.5	2	0	2	3
3SBiH	-10	0	-10	0	10	-10	-10	30	-15	-30	30	-30	30	0	15	-15	-30	30	30	-30	15	15bBH	-794.446	249.930	1	7	4.0	2	0	2	3
4SBiH	-10	0	-10	0	10	-10	0	15	-15	-30	30	-30	30	30	30	-15	-30	30	30	-30	15	15bBH	-791.223	230.581	2	6	4.0	2	0	2	3
5SBiH	-10	0	-10	0	0	0	-10	30	-15	-15	15	0	15	-30	30	-15	-15	0	0	-30	0	15bBH	-772.064	185.382	10	1	5.5	1	0	1	6
6SBiH	-10	0	-10	0	10	-10	0	15	-15	-30	30	-30	30	30	15	-15	-30	30	30	-30	15	15bBH	-778.551	197.227	7	9	8.0	2	0	2	3
7SBiH	-10	0	-10	0	10	-10	0	15	-15	-30	30	-30	30	15	30	-15	-30	30	30	-30	-30	15bBH	-769.898	193.981	12	5	8.5	2	0	2	4
8SBiH	-10	0	-10	0	10	-10	0	0	-15	-30	30	-30	30	0	30	0	-30	30	30	-30	30	15bBH	-779.959	248.009	6	13	9.5	0	0	0	5
9SBiH	-10	0	-10	0	10	-10	-10	30	-15	-15	15	-30	30	-30	30	-15	-15	0	30	-30	0	15bBH	-773.118	197.494	9	10	9.5	1	0	1	6
10SBiH	-10	0	-10	0	10	-10	0	30	-15	-30	30	-30	30	30	15	-15	-30	30	30	-30	15	15bBH	-781.026	229.203	5	18	11.5	2	0	2	3
11SBiH	-10	0	-10	0	10	-10	0	15	-15	-30	30	-30	30	30	-15	-15	-30	30	30	-30	15	15bBH	-769.570	212.188	14	11	12.5	2	0	2	4
12SBiH	-10	0	-10	0	10	-10	-10	15	-15	-30	30	-30	30	0	30	-15	-30	30	30	-30	15	15bBH	-775.106	242.619	8	26	17.0	0	0	0	3
13SBiH	-10	0	-10	0	10	-10	0	30	-15	-15	30	-30	30	30	30	-15	-30	30	30	-30	15	15bBH	-769.255	230.495	15	21	18.0	2	0	2	3
14SBiH	-10	0	-10	0	10	-10	0	0	-15	-30	30	-30	30	30	30	-15	-30	30	30	-30	15	15bBH	-766.408	220.944	21	20	20.5	2	0	2	3
15SBiH	0	-10	-10	0	0	-10	-10	-15	30	0	-15	-30	30	0	0	0	30	15	15	15	30	6bBH	-756.366	142.673	41	4	22.5	3	0	3	5
16SBiH	-10	0	-10	0	10	-10	0	15	-15	-15	30	-30	30	30	30	-15	-30	30	30	-30	15	15bBH	-765.836	237.368	22	24	23.0	2	0	2	3
17SBiH	-10	0	-10	0	10	-10	0	15	-15	-30	30	-30	30	0	30	0	-30	30	30	-30	30	15bBH	-767.536	280.685	18	30	24.0	0	0	0	5
18SBiH	-10	0	-10	0	10	-10	0	15	-15	-30	30	-30	30	15	30	0	-30	30	30	-30	30	15bBH	-766.737	307.050	19	33	26.0	1	0	1	6
19SBiH	-10	0	-10	0	10	-10	-10	15	-15	-30	30	-30	30	-30	30	-15	-30	30	30	-30	15	15bBH	-769.736	210.493	13	48	30.5	0	0	0	3
20SBiH	10	-10	-10	0	0	-10	-10	-15	0	-15	0	-30	30	0	-15	0	30	15	15	15	15	6bBH	-753.026	107.909	53	22	37.5	1	0	1	9
21SBiH	-10	0	-10	0	10	-10	0	0	-15	-15	30	-30	30	30	-15	-15	-30	30	30	-30	15	15bBH	-756.734	188.158	40	38	39.0	0	0	0	3
22SBiH	-10	-10	-10	0	0	-10	-10	-15	15	15	-15	-30	30	0	30	15	15	15	15	15	0	6bBH	-752.404	163.283	57	23	40.0	2	0	2	5
23SBiH	-10	-10	-10	0	10	-10	-10	-15	-15	15	-30	-30	30	0	-15	0	0	0	30	-30	0	15bBH	-766.603	116.528	20	62	41.0	1	0	1	10
24SBiH	-10	0	-10	0	10	-10	0	15	-15	-30	30	-30	30	15	30	-15	-30	30	30	-30	30	15bBH	-771.299	308.988	11	74	42.5	1	0	1	3
25SBiH	0	-10	-10	0	0	-10	-10	-15	15	0	-15	-30	30	0	0	0	30	15	15	15	15	6bBH	-751.434	114.189	60	25	42.5	1	0	1	6

Selected 7TM bundles based on energy and diversity of the angles evaluated.

Prediction of the tertiary structure of GCR1 using the GEnSemBLE complete sampling.

Annealing and MD simulation of SuperBiHelix's newly constructed GCR1 structures

Stable SBs

Transient SBS

Docking and MD simulation of GCR1 with abscisic acid (ABA) and gibberellin A1 (GA1)

Docking and MD simulation of GCR1 with abscisic acid (ABA) and gibberellin A1 (GA1)

Docking and MD simulation of GCR1 with abscisic acid (ABA) and gibberellin A1 (GA1)

The crystal structure of a self-activating g protein α-subunit reveals its distinct mechanism of signal initiation. Jones, J. C.; Duffy, et al. Science Signaling 2011

Thanks

Acknowledgments

- 1. William A. Goddard III. Director, Materials and Process Simulation Center (MSC). California Institute Of Technology
- 2. Soo-Kyung Kim, Ph.D. Director, Biomacromolecular Modeling Section. California Institute Of Technology
- 3. Andrés Jaramillo-Botero, Director of "Multiscale Science and Simulation Center, Caltech" and Director of OMICAS Project: In-silico Multiscale Optimization of Sustainable Agricultural Crops
- 4. Carlos A. Arango M. Profesor y jefe del Departamento de Ciencias Químicas. Universidad Icesi, Cali- Colombia
- 5. H. Fabián Tobar Tosse Biol. Ph.D. Profesor Asistente. Depto. de Ciencias Básicas de la Salud. Pontificia Universidad Javeriana Cali.
- 6. Facultad de Ciencias de La Salud

AJB and CAA would like to thank the OMICAS alliance members. PMH was partially funded by the OMICAS alliance. The OMICAS program acronym stands for "In-silico Multiscale Optimization of Sustainable Agricultural Crops", amember of the Scientific Colombia Ecosystem, sponsored by the World Bank, and the Colombian Ministries of Science, Technology and Innovation (Minciencias), Education, Industry and Tourism, and the ICETEX. Project ID: FP44842-217-2018. SKK and WAG received support from NIH (R01HL155532).