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Abstract: This paper presents an integrated aerial system for the identification of Amazonian Moriche
palm (Mauritia flexuosa) in dense forests, by analyzing the UAV-captured RGB imagery using a
Mask R-CNN deep learning approach. The model was trained with 478 labeled palms, using the
transfer learning technique based on the well-known MS COCO framework©. Comprehensive
in-field experiments were conducted in dense forests, yielding a precision identification of 98%. The
proposed model is fully automatic and suitable for the identification and inventory of this species
above 60 m, under complex climate and soil conditions.

Keywords: Amazon Palm Moriche (Mauritia flexuosa); dense forests; precision agriculture; Mask
R-CNN model; deep learning; convolutional neural networks

1. Introduction

Mauritia flexuosa L.f. (Arecaceae) is a palm tree that occurs in wetlands called buritizais
in Brazil, aguajales in Peru, morichales in Venezuela, and moritales in Ecuador [1,2], which
are located in riverbanks or dense forests in Amazonia [3,4] and headwaters or margins
of the headwaters of gallery forests in South America savannas [5,6]. It is an endemic and
widely distributed palm of South America [2,7]. Figure 1 depicts the palm growing in
dense forest areas. These palms can measure up to 40 m in height. They have a spherical
crown and palmate leaves that are 2.5 m wide and up to 4.5 m in length [8].

For the economy of the Amazonian region, the palms represent a relevant source
of income, allowing the indigenous communities to commercialize the Moriche fruits
and several derivative products for the national and international industry, due to the
highly nutritional bioactive compounds [8,9]. Additionally, the significant growth in the
commercialization of palm-derived products is increasing the industrial valorization for this
crops. Unsaturated fatty acids are extracted from the fruit and the shell, and bioproducts
are considered to have great potential for the health industry. Furthermore, this variety
is not only important for the human consumption, but also for other species, playing an
important role for the conservation of several ecosystems in the neotropics [10].

Currently, the Amazonian Scientific Research Institute (SINCHI) inventories the
aforementioned specie in a manual fashion [11], resulting in a labor-intensive and time-
demanding task. In this regard, the use of computer vision methods enables more accurate
and efficient approaches that facilitate the identification of the palms, by the means of
unmanned aerial vehicles (UAVs) equipped with the necessary sensors.

Deep-leaning approaches for the geo-location of objects using computer vision have
gained significant traction for applications in crop remote sensing, plant phenotyping, and
forest monitoring and conservation. An important body of work recently focused on novel
methods based on R-CNN region proposals [12], Fast R-CNN [13], Faster R-CNN [14],
and Mask R-CNN [15], which have rapidly evolved to become the state-of-the-art for crop
feature detection and extraction in a wide range of agricultural scenarios. Additionally,
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a high demand from the agriculture sector requires methods for the segmentation and
identification of plant and leaf features to improve crop yield and management [16–19].
Convolutional neural networks (CNN) have become the fundamental basis for object detec-
tion algorithms in several fields of research [20]. In [21], convolutional neural networks
(CNN) were used for the UAV-driven identification of conifer seedlings during the reforesta-
tion of areas deforested for mining. They reported a precision of 81% with Faster R-CNN,
which was the best of the three DL models implemented. About 4000 tags in images were
captured by the UAV; the flights were executed at 5 m height and used data augmentation.

Figure 1. The Amazonian Moriche palm (Mauritia flexuosa) specie growing in dense flooded forests.
Its morphology and fruits are also shown.

Other works reported in [22,23] tackled the characterization of external perturbations
for aerial crop imagery, such as changes in ambient illumination, soil noise, and image
perspective corrections. In this regard, CNN models were integrated with an image pre-
processing stage to counteract the external effects, which was helped by combining imagery
showing different wavelengths (RGB and NIR) for extracting vegetation-index features
that are not affected by the aforementioned external factors.

Alternatives besides CNN models, such as transfer learning, have been proposed
by [24], enabling an identification precision of 77.30% in vineyard crops. In [25,26], the
authors demonstrated that combining transfer learning methods with CNN models prior
to the training stage (AlexNet and VGG-16) increased the precision by up to 90% in terms
of fruit maturity detection in vineyards. Similarly, the work in [27] presented a method
using Mask R-CNN to identify apples in real-time, obtaining a precision of 97.3% and a
recall of 95.7%.

In [28], a novel CNN model was applied for citrus tree identification in dense orchards.
The proposed method outperforms Faster R-CNN and RetinaNet in terms of precision,
by training with multispectral imagery captured with a UAV. Additionally, in [29] Mask
R-CNN was used for the identification and segmentation of oranges, using both RGB and
the HSV color space combined. It achieved precision of 89% to 97%. Following a similar
approach, in [30], multimodal RGB and NIR images were used for training a Faster R-CNN
detector via transfer learning, achieving 83% precision for bell pepper detection. In [31]
Faster R-CNN was used to identify passionfruit by applying the spacial pyramid matching
(SPM) method as a feature extractor, in which a SVM classifier handled the maturity state
identification. Its precision was 92.7%.

Other works reported in [32,33] also used Mask R-CNN to detect panicles in rice
crops, by processing UAV-captured imagery at the canopy level. Several images at different
UAV flight altitudes were combined in order to improve on the detection precision. In
this regard, feature-extraction methods are key to defining proper input training data for
machine learning models. In [34], the well-known YOLO algorithm was compared against
the Mask R-CNN detector, by outperforming the former during grapefruit identification
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tasks. Furthermore, several works [35–37] also demonstrated that fusing both RGB and
NIR data improves the precision in fruit identification labors, even when the fruits overlap
with each other. In this regard, the Mask R-CNN method was used in combination with
the DBSCAN spatial clustering algorithm.

To the best of the authors’ knowledge, two works were found in the specialized
literature concerning the study of the Moriche fruit in the Amazon region. In [38,39],
deep-learning models based on CNN were used in order to quantify and predict how the
Moriche palms grow in the Peruvian Amazon. To that end, training data were collected
during four consecutive years. The random forest algorithm was used for the proper
labeling within orthomosaics models.

For the application at hand, the proposed system architecture is presented in Figure 2.
Here, we propose the integration of Mask R-CNN models for detecting Moriche palms
in high-dense forests located at the Colombian Amazon region. We used the Phantom 4
Multispectral UAV (P4M) manufactured by DJI to capture the images. Our AI-driven UAV
solution allows for the aerial identification and counting of the palms, being a fundamental
input for the inventory research conducted in the tropical forest zone of the Amazon.

Considering the development of different CNN-based algorithms, in this paper we
focus on the region-based models, such as Faster R-CNN, which has a region proposal net-
work (RPN) for segmentation. Additionally, Mask R-CNN specializes in the segmentation
of instances, based on Faster R-CNN, by using the input image as a feature map to apply
the region proposal network (RPN), thereby performing a process of alignment of features
of the regions of interest (RoI) [15].

Figure 2. System architecture. Image capture protocol, data and label preparation, hyperparameter
configuration, model training, validation, and testing.

In this paper, our contributions are twofold: (i) we propose an integrated AI-driven
method to identify the Moriche palm within dense forests of the Amazon, by assembling a
comprehensive dataset with UAV-captured imagery that has been properly labeled, and
(ii) the aforementioned dataset was validated in the field, by training a Mask R-CNN
deep-learning method to identify Moriche palms with a precision of 98%.

2. Materials and Methods

A CNN is mainly composed of two parts: one stage that can be used as a feature
extractor that generates a feature map based on the input data and a second stage that
can be used as a layer classifier. The resulting feature map is lighter and easier to process.
Figure 3 shows the general CNN architecture. Equation (1) describes the convolution
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filters, Equation (2) the ReLU (Rectified Linear Unit) nonlinearity activation function, and
Equation (3) the Max pooling or grouping of maximum pixels for each defined window,
which reduces the feature map by applying the corresponding kernel or convolution filter.

Si,j(I × k)i,j = ∑m ∑n Ii,j × Ki−m,j−n (1)

ReLU(x) =
{

x, x ≥ 0
0, x < 0

}
(2)

Max(0, x) =
{

x, x ≥ 0
0, x < 0

}
(3)

Figure 3. Convolutional neural network.

Our application requires the automatic identification of Moriche palms. The Mask
R-CNN algorithm was implemented, as previously described by Figure 3. Additionally,
the proposed system has been validated and tested by conducting in-field experiments at
San Jose del Guaviare, located in the Amazon region of Colombia, as shown in Figure 4. At
this location, the Moriche palms grow in flooded plots within dense forests with limited
human access.

Farm 1 Farm 2

Farm 1 Farm 2Farm 1 Farm 2

Farm 1 Farm 2Farm 1 Farm 2

Figure 4. Geo-location of the Moriche palm plots. South America, Colombia, Guaviare Department,
San José del Guaviare Municipality.
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2.1. Experimental Protocol

Two Moriche farms were characterized in this study. The former was enclosed in a
polygon of 47 ha and the latter in a polygon of 17 ha. Overall, a training and validation
dataset of 478 palms with 132 labeled imagery was assembled. UAV-based imagery was
captured at an altitude of 60 m above the ground. The assembled dataset for training and
validation is the result of several trial flights over the two polygons, in order to consider
different weather conditions, during the months of October and November 2020. The UAV
(P4 DJI Phantom) comes with an integrated multispectral camera of 2 megapixels for each
band. Based on the flying altitude, the UAV captures the corresponding images, avoiding
overlapping. The data resolution corresponds to 3.2 cm/pixel. Only the RGB bands were
used for this research. The other images were kept for other purposes. The images were
not preprocessed, nor were orthomosaics constructed.

On the other hand, two sets of images with complex backgrounds were prepared to be
used for model testing. Set 1 corresponds to a flooded zone which casts multiple shadows,
and set 2 corresponds to a dense forest, in which the palms are overlapped or occluded
with each other, and accompanied by other types of palm and tree species. Additionally,
a testing dataset was assembled by capturing imagery within a range of UAV altitudes
(40–150 m above the ground), with the aim of comparing extracted features at different
field of view scales. All images (around 500) for testing were captured on different flights,
at different times of day and in different weather conditions.

The annotation process was performed by using a VGG Image Annotator approach,
which is a semi-automatic and interactive tool for labeling images, using the polygon shape
for that purpose [40]. Overall, we obtained 478 labels for both farms, a sufficient number
to train our model, according to the experimental results reported in the forthcoming
Section 3. It is important to highlight that the Mask R-CNN model was trained using the
Keras 2.3.1 API for the Tensorflow framework, running on a 10th generation Intel core i7
processor with 16 GB of RAM and 6 GB NVidia Geforce RTX 2060 CPU.

2.2. Hyperparameters and Input Data

The ResNet 50 architecture was used as a feature extractor [41]. Image dimensions
were set to 512 × 512, having a learning rate of 0.001 with 500 steps per epoch. Overall,
20 epochs were required, and minimum confidence thresholds were 20, 60 and 85. Transfer
learning was used to train the CNN model with few labeled images, resulting in less data
collection time and computational costs associated with the model training. Additionally,
pre-trained weights from the MS COCO dataset were used for this task [42]. The set of
images for training and validation was split into 80% for training (354 labels in 106 images)
and 20% for validation (124 labels in 26 images).

2.3. Palm Segmentation and Identification

The architecture presented in Figure 3 enables the detection, localization, and classifi-
cation of Moriche palms, by applying a semantic segmentation of instances that generate a
mask with the region of interest (RoI). Only two clusters or classes were needed: the palm
and the background. A comprehensive ground truth was assembled by combining imagery
from dispersed palms plots that can be identified with ease and precision, and also with
imagery from palms located at dense forests. The model is able to help in the inventory of
the species.

2.4. Performance Metrics

The model training was evaluated based on precision, recall, F1-score and the in-
tersection over Union (IoU). The precision (P) is defined in Equation (4) as an indicator
of correct predictions according to the true positives (Tp) among all identified instances,
denoting quality. Recall (R) in Equation (5) is an indicator of the correct predictions among
all the elements contained in the ground truth (Tp plus (Fn) false negatives). The F1-score
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in Equation (6) is the harmonic mean between precision and recall, and the IoU metric in
Equation (7) is the sum of expected pixels over the sum of pixels predicted by the model.

Precision =
Tp

Tp+Fp
(4)

Recall = Tp
Tp+Fn

(5)

F1 = 2×P×R
P+R (6)

IoU = Areao f overlap
Areao f Union =

Tp
Tp+Fp+Fn

(7)

3. Results

To determine the corresponding density of palms per hectare, the proposed model
must identify, classify, and count the detected Moriche palms. To this purpose, several
Mask R-CNN hyperparameters were tuned during training. In this regard, Table 1 and
Figure 5 show the error curves resulting from training the algorithm for 10 to 100 epochs.
The learning rate was set to 0.001, since higher rates generated deficient learning, whereas
lower rates resulted in over-fitting.

Table 1. Training and validation loss for Mask R-CNN.

Epoch Loss Training Loss Val

10 21.75 48.69
20 14.11 10.5
40 10.65 8.13
60 9.09 14.54

100 7.64 9.69
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Figure 5. Training and validation loss curves for Mask R-CNN.

According to Table 1, the lowest error for training was obtained at 100 epochs. Nonethe-
less, the lowest error for validation was obtained at only 40 epochs of iterations. Table 2
shows the numerical results for testing each model by varying the confidence threshold
among 20, 60, and 85. As mentioned, the validation set contained 124 palms labeled in
26 images.
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Table 2. Validation of models with varying confidence thresholds. Quantitative results for palm
identification and counting at different epoch iterations.

Confidence 20 Confidence 60 Confidence 85

Epoch Counting IoU Counting IoU Counting IoU

10 125 81.76 124 81.91 118 83.56
20 126 84.33 125 84.94 121 85.60
40 126 85.81 124 85.63 120 85.17
60 119 87.23 118 87.38 118 87.38
100 119 88.55 119 88.55 119 88.55

Table 2 shows quantitative results for palm identification and counting at different
epoch iterations. Accurate results were obtained from those models trained with 10, 20, or
40 epochs, and confidence thresholds of 20 and 60. Additionally, the IoU tended to improve
by increasing the training epochs; however, the improvement was not significant, being
only about 5%.

Table 3 shows the results of using the trained model with 20 epochs on the validation
set. With this setup, we expect to obtain an intermediate IoU in order to generalize the
implementation of the model to other types of input data, since upcoming work will be
oriented towards fruit maturity prediction. As observed from the reported data, all tests
resulted in outstanding metrics, which validates the proposed model.

Table 3. Metrics on validation data.

Confidence Precision Recall F1 Score Count Model

C-20 0.9683 1 0.9839 126
C-60 0.9680 1 0.9837 125
C-85 0.9917 1 0.9958 121

The two sets of images available for testing were implemented. Tables 4 and 5 show
the precision, recall, and F1-score obtained. According to the results, there is no parity
between precision and recall; however, the best performance can be identified by the F1-
score of 91.52%, a recall of 99.58%, and a precision of 84.67%, which were achieved with
a threshold of 20. The best performance on set 2 was given by a confidence threshold of
60, with an F1-score of 91.19%, a recall of 88.22%, and precision of 94.37%. With set 2, the
recall was quite low compared to the set 1 results and those for the validation set. It can
also be interpreted that the confidence threshold had a significant impact depending on the
background of the images, yielding an average F1-score of 90.

Table 4. Metrics on data from set 1, flooded bottom zone.

Set 1 Precision Recall F1 Score

C-20 0.8467 0.9958 0.9152
C-60 0.8462 0.9665 0.9023
C-85 0.8750 0.9363 0.9046

Table 5. Metrics on data from set 2, dense forest zone.

Set 1 Precision Recall F1 Score

C-20 0.9437 0.8662 0.9033
C-60 0.9437 0.8822 0.9119
C-85 0.9712 0.8172 0.8876

Finally, in Figure 6 we characterize how the Moriche palm identification process
performs depending on the UAV altitude. The numerical data report optimal classifications
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in a range between 40 and 90 m, maintaining proper precision and recall metrics, and
Figure 7 shows a sample of the model classification results in different contexts, dense
forest, scattered palms, flooded ground, and dense forest without the presence of the palm
under study.

Figure 6. The Moriche palm identification process at different UAV altitudes: 60, 90, 120, and 150 m.

Figure 7. Moriche palm identification. Line one (a1–d1) shows the different contexts, dense forest,
scattered palms, flooded ground, and dense forest without the presence of the Moriche palm. Line
two (a2–d2) shows the model’s results.

4. Conclusions and Discussion

In this work, we presented a deep-learning approach based on the Mask R-CNN
mathematical model aimed at the identification of Amazonian Moriche palms (Mauritia
flexuosa) in dense forests, by processing UAV-captured RGB imagery that enabled the
training of the model. A structured dataset was assembled with 132 images containing
478 labeled palms. It is important to highlight that due to the use of the transfer learning
technique, the model achieved an overall precision >96% with a reduced input dataset, i.e.,
without the need for adding data augmentation algorithms into the model.

By conducting several in-field experiments in dense forests located at the Colombian
Amazon region, the proposed method was tested and validated, allowing us to identify
and count the number of Moriche palms per image, as shown in Figure 6. In this regard,
the proposed model is fully automatic and suitable for the identification and inventory
of this specie under complex climate and soil conditions, such as the dense forest of the
Amazon, since the model was trained to consider different weather conditions, and image
segmentation ensured adequate extraction of the RoI. As reported in Tables 4 and 5, two
scenarios were considered: scattered palms in flooded terrains and palms in highly-dense
vegetation. The former imposed several challenges to the proposed model, since water
reflections tend to add noise and uncertainty during training. Nonetheless, the model was
able to reduce external noise, mainly caused by shadow reflections.

As future work, it would be interesting to explore graph-based networks in com-
bination with the Mask R-CNN deep-learning approach proposed herein, since graph
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techniques allow for the extraction of rich feature information that can be associated with
the phenological stage of the Moriche, enabling an accurate estimation of the fruit maturity
and other health-related information of the palms.
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