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WGCNA

WGCNA (Weighted gene co-expression network analysis)

Is a widely used data mining method especially for studying biological
networks based on pairwise correlations between variables.

Data for WGCNA:
e Gene expression data (microarray or RNA-seq)

o Clinical/phenotypical traits from the same individuals
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Weighted gene co-expression network
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WGCNA methodology

Camila Riccio

Construct a gene co-expression network
Rationale: make use of interaction patterns among genes
Tools: correlation as a measure of co-expression

Identify modules
Rationale: module (pathway) based analysis
Tools: hierarchical clustering, Dynamic Tree Cut

Relate modules to external information
Array Information: clinical data, SNPs, proteomics |
Gene Information: ontology, functional enrichement

Rationale: find biologically interesting modules

Study module relationships
Rationale: biological data reduction, systems-level view
Tools: Eigengene Networks

Find the key drivers in interesting modules
Rationale: experimental validation, biomarkers
Tools: intramodular connectivity, causality testing
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Gene Expression Data

Let dj; be the expression level of gene i in sample j, RNA-sequencing data
present the following structure:

di1 dip - dyp

dy1 d - dyp
D = . . .

dnl dn2 te dnp

Experiment data: Oryza sativa gene expression levels
e Control data: C = [cjj|nxp.

@ Salt stress treatment data: T = [tjj]nxp-

The expression changes are measure through the differential expressiop
matrix

E= [eU]nXpa €jj = Iogz(tij/clj)~ J‘}\VEBIFAIG‘J;
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Gene co-expression network construction

Define a Gene Co-expression Similarity

[

Define a Family of Adjacency Functions

Determine the AF Parameters

[

Define a Measure of Node Dissimilarity

[

Tdentify Network Modules (Clustering)

[

Relate Network Concepts to Each Other

[

Relate the Network Concepts to
External Gene or Sample Information
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Gene Co-expression Similarity

The similarity matrix S = [sjj]nx» measures the level of concordance
between gene expression profiles across the experiments.

= |cor(g,-,gj)|, Sij € [07 1]

Differential Expression matrix Similarity matrix

13102105279 13103.100726 13106.404257 13102103177

13102405279 1.0979195 06549420 07451395  1.3129533 13102405279 10000000 027969713  0.6693985  0.8126950
13103400726 07776076 09593580 10000000  0.8845228 13103400726 0.2796971 100000000  0.2424204  0.1857460
13106104257 09696264 05077946 06903155  1.3107875 ., - 13106404257  0.6693985 024242041 10000000  0.5611319
13102403177 09781642 07330076 07728225  1.1570437 13102403177 08126950  0.18574604 05611319 1.0000000
13105103352 1.1710778 06765930 07004397  1.3006595 1310503352 08489128 017620182 07025265  0.7878663
1310902369 11069152 17369656  1.0000000  1.3692338 13109.402369 01698732 001098545 02347910 02485275
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Number of genes: n = 5142
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Adjacency Function

Power adjacency function

The adjacency matrix A = [ajj]nxn encodes the connection strength
between each pair of nodes (genes).

a,-j — power(sl_']'aﬁ) = 557 ﬁ Z 1'7 aij = [0’ 1]
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Determining the Parameter of the Adjacency Function

Scale-free Topology Criterion

Use the first parameter value that lead to a network satisfying scale-free
topology at least approximately, e.g. R? between log(p(k)) and log(k),
greater than 0.9.

Scale independence Mean connectivity
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Measure of Node Dissimilarity

TOM: Topological Overlap Matrix

The topological overlap matrix Q = [wj;] measures direct connection +
shared neighbours:
/,'j + ajj
Wijj = —
min k;, ki +1 — aj;

where [ =" aj,a,; and ki = ), aj, is the node connectivity.

>

No shared neighbours: low TOM Many shared neighbours: high TOM

The topological overlap based dissimilarity measure is defined by
dZJ =1- w,-j.
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|dentifying Gene Modules

Modules are groups of nodes with high topological overlap. Intuitively
speaking, modules are groups of genes whose expression profiles are highly
correlated across the samples.
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Hierarchical clustering steps

Cluster Dendrogram
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Hierarchical clustering steps

Cluster Dendrogram

1.0

Step one: Construct a hierarchical
clustering tree (dendogram) that
provides information on how objects
are iteratively merged together.

]

Gene.9

Merging height
0.8
Gene8 —
Gene.4
Gene.3

Gene.7

Gene.5
Gene.6

Gene.10

Step two: ldentify branches that
correspond to clusters. Label
branches by numbers and/or colors.
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|dentifying Gene Modules

Gene dendrogram and module colors
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|dentifying Gene Modules

Clustering of module eigengenes

0.6

0.7
|
MEgrey }

0.4
|
MEpurple WJ

= ™
5 °
Q
T
o
o
<1 . ]
=} o o ° ‘ ‘
T W < £ =
s = g E 5
e 1% = X 2 o W
(=] ) = ] 3 @ =
5 o 2 T g
w fri] 8 < i
= = = g =

MEblue
MEbrown
MEturquoise

Pontific ad
JAVERIANA
Cali

Camila Riccio (PUJ-Cali) WGCNA and LASSO in coexpression network September 13th 2019 19/29



Merging of modules whose expression profiles are very
similar

Cluster Dendrogram

Height
0

Dynaric Tree Cut

JAVER
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Merging of modules whose expression profiles are very

similar

Module | Color Dynamic Tree Cut | Merged Dynamic
0 grey 2595 2595
1 turquoise 841
2 blue 321 618
3 brown 297
4 yellow 224 224
5 green 182 182
6 red 172 1013
7 black 144 144
8 pink 127 127
9 magenta 71 71
10 purple 67 67
11 greenyellow 57 57
12 tan 44 44

Table: Number of genes and colors assigned to
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LASSO method

LASSO (Least Absolute Shrinkage and Selection Operator)

Is a regularized linear regression technique, a method that combines a
regression model with a procedure of contraction of some parameters
towards zero and selection of variables, imposing a restriction or a penalty
on the regression coefficients.
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LASSO method

LASSO (Least Absolute Shrinkage and Selection Operator)

Is a regularized linear regression technique, a method that combines a
regression model with a procedure of contraction of some parameters
towards zero and selection of variables, imposing a restriction or a penalty
on the regression coefficients.

Very usefull in problems where the number of variables (genes) n is much
greater than the number of samples p (n > p).
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Lasso solves the least squares problem with restriction on the Li-norm of

the coefficient vector:

P n 2 n
min Z Vi — Zﬁjx,-j , sujeto az 1Bi| <'s
i=1 j=1 j=1
Or equivalently minimizing:
2
P n n
Doy 8 | A5
i=1 j=1 j=1

being s, A > 0 the respective penalty parameters for complexity.
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Lasso solves the least squares problem with restriction on the Li-norm of

the coefficient vector:

P n 2 n
min Z Vi — Zﬁjx,-j , sujeto az 1Bi| <'s
i=1 j=1 j=1
Or equivalently minimizing:
2
P n n
Doy 8 | A5
i=1 j=1 j=1

being s, A > 0 the respective penalty parameters for complexity.

LASSO produces parameter estimation and simultaneous
variable selection for increasing values of A.
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Phenotypic data

Phenotypic trait: [Na™]/[K™] ratio in rice roots as an indicator of salinity
tolerance, measured in the 91 accessions.

Salt’s toxic effects:

e Osmotic stress: [Na]p < [Na]s impedes water uptake affecting cell
expansion and growth. reduce stomatal conductance, transpiration,
and carbon assimilation.

o lonic stress: [Nat]/[K™] > T induces apoptosis, the growth of young
leaves is delayed and the senescence of old leaves is accelerated.
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Find the best A using cross-validation
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Results

For A = 10.14 two modules are seleted:

Camila Riccio (PUJ-Cali)

Beta Module Genes
505.92421 | (Intercept)
-12.17368 | MEmagenta 71
-102.28731 | MEgrey 2595
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