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WGCNA

WGCNA (Weighted gene co-expression network analysis)

Is a widely used data mining method especially for studying biological
networks based on pairwise correlations between variables.

Data for WGCNA:

Gene expression data (microarray or RNA-seq)

Clinical/phenotypical traits from the same individuals
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Weighted gene co-expression network
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WGCNA methodology
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Gene Expression Data

Let dij be the expression level of gene i in sample j , RNA-sequencing data
present the following structure:

D =


d11 d12 · · · d1p

d21 d22 · · · d2p
...

...
. . .

...
dn1 dn2 · · · dnp


Experiment data: Oryza sativa gene expression levels

Control data: C = [cij ]n×p.

Salt stress treatment data: T = [tij ]n×p.

The expression changes are measure through the differential expression
matrix

E = [eij ]n×p, eij = log2(tij/cij).
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Gene co-expression network construction
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Gene Co-expression Similarity

Similarity

The similarity matrix S = [sij ]n×n measures the level of concordance
between gene expression profiles across the experiments.

sij = |cor(gi , gj)| , sij ∈ [0, 1]

Number of genes: n = 5142
Number of samples: p = 91
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Adjacency Function

Power adjacency function

The adjacency matrix A = [aij ]n×n encodes the connection strength
between each pair of nodes (genes).

aij = power(sij , β) = sβij , β ≥ 1., aij ∈ [0, 1]
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Determining the Parameter of the Adjacency Function

Scale-free Topology Criterion

Use the first parameter value that lead to a network satisfying scale-free
topology at least approximately, e.g. R2 between log(p(k)) and log(k),
greater than 0.9.
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Measure of Node Dissimilarity

TOM: Topological Overlap Matrix

The topological overlap matrix Ω = [ωij ] measures direct connection +
shared neighbours:

ωij =
lij + aij

min ki , kj + 1− aij

where lij =
∑

u aiuauj and ki =
∑

u aiu is the node connectivity.

The topological overlap based dissimilarity measure is defined by
dωij = 1− ωij .
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Identifying Gene Modules

Modules

Modules are groups of nodes with high topological overlap. Intuitively
speaking, modules are groups of genes whose expression profiles are highly
correlated across the samples.

Camila Riccio (PUJ-Cali) WGCNA and LASSO in coexpression networks September 13th 2019 15 / 29



Identifying Gene Modules

Modules

Modules are groups of nodes with high topological overlap. Intuitively
speaking, modules are groups of genes whose expression profiles are highly
correlated across the samples.

Camila Riccio (PUJ-Cali) WGCNA and LASSO in coexpression networks September 13th 2019 15 / 29



Hierarchical clustering steps

Step one: Construct a hierarchical
clustering tree (dendogram) that
provides information on how objects
are iteratively merged together.

Step two: Identify branches that
correspond to clusters. Label
branches by numbers and/or colors.

Camila Riccio (PUJ-Cali) WGCNA and LASSO in coexpression networks September 13th 2019 16 / 29



Hierarchical clustering steps

Step one: Construct a hierarchical
clustering tree (dendogram) that
provides information on how objects
are iteratively merged together.

Step two: Identify branches that
correspond to clusters. Label
branches by numbers and/or colors.

Camila Riccio (PUJ-Cali) WGCNA and LASSO in coexpression networks September 13th 2019 17 / 29



Identifying Gene Modules
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Identifying Gene Modules
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Merging of modules whose expression profiles are very
similar
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Merging of modules whose expression profiles are very
similar

Module Color Dynamic Tree Cut Merged Dynamic
0 grey 2595 2595

1 turquoise 841

2 blue 321 618

3 brown 297

4 yellow 224 224

5 green 182 182

6 red 172 1013

7 black 144 144

8 pink 127 127

9 magenta 71 71

10 purple 67 67

11 greenyellow 57 57

12 tan 44 44

Table: Number of genes and colors assigned to each module
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LASSO method

LASSO (Least Absolute Shrinkage and Selection Operator)

Is a regularized linear regression technique, a method that combines a
regression model with a procedure of contraction of some parameters
towards zero and selection of variables, imposing a restriction or a penalty
on the regression coefficients.

Very usefull in problems where the number of variables (genes) n is much
greater than the number of samples p (n� p).
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Lasso solves the least squares problem with restriction on the L1-norm of
the coefficient vector:

min


p∑

i=1

yi −
n∑

j=1

βjxij

2 , sujeto a

n∑
j=1

|βj | ≤ s

Or equivalently minimizing:

p∑
i=1

yi −
n∑

j=1

βjxij

2

+ λ

n∑
j=1

|βj |

being s, λ ≥ 0 the respective penalty parameters for complexity.

LASSO produces parameter estimation and simultaneous
variable selection for increasing values of λ.

Camila Riccio (PUJ-Cali) WGCNA and LASSO in coexpression networks September 13th 2019 24 / 29



Lasso solves the least squares problem with restriction on the L1-norm of
the coefficient vector:

min


p∑

i=1

yi −
n∑

j=1

βjxij

2 , sujeto a

n∑
j=1

|βj | ≤ s

Or equivalently minimizing:

p∑
i=1

yi −
n∑

j=1

βjxij

2

+ λ

n∑
j=1

|βj |

being s, λ ≥ 0 the respective penalty parameters for complexity.

LASSO produces parameter estimation and simultaneous
variable selection for increasing values of λ.

Camila Riccio (PUJ-Cali) WGCNA and LASSO in coexpression networks September 13th 2019 24 / 29



Phenotypic data

Phenotypic trait: [Na+]/[K+] ratio in rice roots as an indicator of salinity
tolerance, measured in the 91 accessions.

Salt’s toxic effects:

Osmotic stress: [Na]pl < [Na]s impedes water uptake affecting cell
expansion and growth. reduce stomatal conductance, transpiration,
and carbon assimilation.

Ionic stress: [Na+]/[K+] > T induces apoptosis, the growth of young
leaves is delayed and the senescence of old leaves is accelerated.
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Find the best λ using cross-validation
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Results

For λ = 10.14 two modules are seleted:

Beta Module Genes
505.92421 (Intercept)

-12.17368 MEmagenta 71

-102.28731 MEgrey 2595

[3][1][4][2][5]
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