

Graph based data fusion: Application to Change detection and rice crops phenotyping

Pontificia Universidad Javeriana Cali

October 28, 2019

Change detection

data fusion contest 2009-2010

Challenges in CD

(a) Before event

Problems

- Gaussian noise.
- Local brightness distortion.
- Intra-class variation and inter-class variation in the image are relatively small.

Satelital images on the red band for fire event near Omodeo lake.

⁽b) After event

Previous work

Threshold methods:

- Minimal error [1].
- rayleigh-Rice (rR)[2].
- rayleigh-rayleigh-Rice (rrR)[3].

Machine learning methods:

- Fuzzy clustering [4].
- Genetic algorithm [5].
- Image fusion and fuzzy clustering [6].

Graph

• The weight w_i , measures or quantify how strong is the relation between nodes, the common measure used for these weights is a Gaussian kernel $w_{i,j} = \exp\left(-\frac{d(V_i,V_j)^2}{\sigma^2}\right)$, where, $d(V_i, V_j)$ is the distances between nodes and σ is the standard deviation of all nodes.

Graph laplacian

A common application of graphs is the embedding of G based on the Laplacian (L) matrix into space \mathbb{R}^m , keeping the graph nodes as close as they were on the input space. In short, the embedding of graph is given by the eigenproblem below: [8] :

$$Ly = \lambda Dy, \tag{1}$$

where L = D - W, W is known as the adjacency matrix or weights of the graph, D is a diagonal matrix which components are the degree of node $(di = \sum_{j} w_{i,j})$.

Nyström approximation

- Take *n_s* samples.
- Compute distances between samples vs samples (square matrix A) and between samples vs complement (rectangular matrix B).

Chart flow

Multi-modal/temporal graph.

Chart flow

— ÓMICAS - P4

Spectral decomposition

The eigenvectors of the matrix W, can be spanned by eigenvalues and eigenvectors of $A(U: A = U\Lambda U)$ by $\hat{U} = \begin{bmatrix} U; B^{\top}U\Lambda^{-1} \end{bmatrix}^{\top}$.

But the approximated eigenvectors \hat{U} are not orthogonal. In order to get orthogonal eigenvectors is define that $S = A + A^{-\frac{1}{2}}BB^{\top}A^{-\frac{1}{2}}$, diagonalizing S ($S = U_s \Lambda_s U_s$) the final approximated eigenvectors of W are given by [9]:

$$\hat{U} = \begin{bmatrix} A \\ B^{\top} A^{-\frac{1}{2}} \end{bmatrix} U_s \Lambda_s^{-\frac{1}{2}}.$$
 (2)

Chart flow for CD

Application of MMT-G for CD.

Dataset A (1995 - 1996): Lake Mulargia (Sardinia Island, Italy). Dataset B (2013): Lake Omodeo (Sardinia Island, Italy).

(a) Mulargia lake

(b) F. Mulargia lake

(c) Omodeo lake

(d) Fire event

NIR and Red band respectively.

Qualitative results

Quantitative results

Table: Model Performance for dataset A.

Method	MA (%)	FA (%)	Р	R	K	OE (%)
KI [1]	10.2425	1.0490	0.7229	0.8975	0.7941	1.3211
rR-EM [2]	5.7245	4.0147	0.4173	0.9427	0.5605	4.0653
rrR-EM [3]	10.1440	1.0637	0.7203	0.8985	0.7928	1.3324
MMT-G	4.8504	0.3120	0.9029	0.9515	0.9242	0.4463

Table: Model Performance of dataset B.

Method	MA (%)	FA(%)	Р	R	K	OE (%)
KI [1]	0	3.4291	0.5903	1	0.7262	3.2676
rR-EM [2]	0.0029	3.7382	0.5693	0.9999	0.7080	3.5623
rrR-EM [3]	0.0029	2.1449	0.6973	0.9999	0.8112	2.0440
MMT-G	14.4217	0.1226	0.9718	0.8557	0.9059	0.7960

Rice phenotyping

Experimental set-up in [10]

Data fusion of R and G bands

(a) Samples

— ÓMICAS - P4

Data fusion of R and G bands

— ÓMICAS - P4

Concluding remarks

- Deals with the Gaussian noise and local brightness distortion, outperforming threshold methods.
- The results depend on the selection and size of the samples from data (How to select them?).
- Euclidean distance is not enough to measure or capture the differences in data (Try other metrics).

Future work

- Explore the use of graph fourier transform (GFT) in the fusion step.
- Propose and test other kind of metrics as distance in the Gaussian kernel.
- Use some graph signal processing (GSP) techniques (Smoothness, spectral filtering and causal dependencies) to improve performance of the model.

Currently, we are working on a paper "*Multi-modal/temporal graph for change detection in multi-spectral images*", for the International Conference on Acoustics, Speech, and Signal Processing (**ICASSP 2020**) an IEEE Signal Processing Society conference.

Bibliography I

J. Kittler and J. Illingworth, "Minimum error thresholding," *Pattern recognition*, vol. 19, no. 1, pp. 41–47, 1986.

M. Zanetti, F. Bovolo, and L. Bruzzone, "Rayleigh-rice mixture parameter estimation via em algorithm for change detection in multispectral images," *IEEE Transactions on Image Processing*, vol. 24, no. 12, pp. 5004–5016, 2015.

M. Zanetti and L. Bruzzone, "A theoretical framework for change detection based on a compound multiclass statistical model of the difference image," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 56, no. 2, pp. 1129–1143, 2017.

A. Ghosh, N. S. Mishra, and S. Ghosh, "Fuzzy clustering algorithms for unsupervised change detection in remote sensing images," *Information Sciences*, vol. 181, no. 4, pp. 699–715, 2011.

M. Gong, Z. Zhou, and J. Ma, "Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering," *IEEE Transactions on Image Processing*, vol. 21, no. 4, pp. 2141–2151, 2011.

G. Alfredo Caicedo Barrero, *Introducción a la Teoría de Grafos*. Elizcom S.a.s. [Online]. Available: https://books.google.com.co/books?id=3hH11r7j1tcC

M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," *Neural computation*, vol. 15, no. 6, pp. 1373–1396, 2003.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik, "Spectral grouping using the nystrom method," *IEEE transactions on pattern analysis and machine intelligence*, vol. 26, no. 2, pp. 214–225, 2004.

Bibliography II

C. A. Devia, J. P. Rojas, E. Petro, C. Martinez, I. F. Mondragon, D. Patino, M. C. Rebolledo, and

J. Colorado, "High-throughput biomass estimation in rice crops using uav multispectral imagery," *Journal of Intelligent & Robotic Systems*, pp. 1–17, 2019.