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(a) Upland vegetative stage

- no panicles, only leaves are

observed.

(b) Upland reproductive

stage - the reproductive

stage ends with the flower-

ing. A few panicles should

be observed.

(c) Upland ripening stage

(d) Lowland vegetative

stage

(e) Lowland reproductive

stage

(f) Lowland ripening stage

Fig. 7 Changes in the crop appearance as the plants grow. In the vegetative stage, Figs.

7(a) and 7(d) the green color is predominant. In reproductive stage, Figs. 7(b) and 7(e),

panicle formation starts and yellow features appear, but parcels can still be di↵erentiated.

In ripening stage, the yellow color is predominant, and parcels cannot be distinguished with

ease.

algorithm has been conceived as an e↵ort to automate the monitoring of rice
crops using NIR-image based non-destructive methods.

3.2 AGBE Results

Figure 8 presents experimental results of applying the column and circle seg-
mentation algorithms previously defined in Figure 2. As observed, the algo-
rithms are capable of processing NIR-images with a wide range of UAV flying
altitudes i.e. di↵erent crop scales.

The resulting image with the area to assess (cf. Figure 8) is used for the
calculation of the vegetative indices. Since 7 vegetative indices were used to-
gether with a constant coe�cient, there are 8 possible parameters, hence 28�1
possible combinations. For any given combination, the number of parameters
in the regression depends on the number of the used coe�cients. For instance,
if NDVI, MSAVI, TVI and DVI are used together with the constant term,

(c)

Edges

Vegetative Reproductive Ripening

week 1 week 8 week 12 Time

Variables (Canopy - Level)
§ NIR, RGB, Térmico
§ Nitrógeno, Clorofila, Fósforo 
§ Biomasa
§ Indices (NDVI...)
§ Estrés hídrico

Aérea Tierra-fija
( IoT-WSN )

Tierra-móvil
( AGV )

Variables (Plot/soil - Level)
§ RGB
§ Indices (NDVI...)
§ Temperatura, Humedad
§ Velocidad aire
§ CO2, N2O, Metano 
§ Radiación

Variables (Plant/soil - Level)
§ 3D LiDAR - Morphology
§ 3D Light-Field - Architecture
§ NIR - Indices (NDVI...)
§ Suelo: K+, NO3-, pH, temp/hum
§ Follaje, Impedancia - Fotoacústica
§ Clorofila - Fotoluminiscencia

BASES DE DATOS

(Canopy - Level)
o # ensayos:  26
o Genotipos: 8
o # imágenes: 32.542
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UAVs	en	Agricultura	de	Precisión

ü Crecimiento exponencial en la 
última década

ü UAVs comerciales cada vez más 
económicos (~1500 USD)

ü Integran cámaras, LiDAR y alto 
poder de cómputo

☒ Aún hay restricciones de la 
capacidad de carga (~1Kg para 
los UAVs de bajo costo)

☒ Límites en autonomía de vuelo 
(~20min según carga)

☒ Autopilotos cada vez mejores, 
pero con falencias en precisión y 
control de altura.



UAVs	en	Agricultura	de	Precisión

Riego de pesticidas o hídrico Modelos 3D de cultivos

Modelos hiperespectrales

Smart-Farming



UAVs	en	Agricultura	de	Precisión

Parrot bluegrass system Sequoia NIR camera



Control	de	vuelo	de	alta	precisión
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Por qué necesitamos un autopiloto 
robusto?



Control	de	vuelo	de	alta	precisión
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6D Dynamics
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ÿb
z̈b

3

7777775
(1)

Both rotational !̇ and translational �̇ accelerations could be derived from
the Newton-Euler formulation, as:

V̇b = I�1
b [Fb � İbVb], (2)

being Ib 2 <6x6 the spatial inertia operator calculated at the Center of Mass
(CM) of the body frame {b}. It can be expressed as:
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where Jb 2 <3x3 is the inertial tensor with diag(Ixx, Iyy, Izz) being the mo-
ments of inertia, m is the mass of the UAV and U is a 3 ⇥ 3 identity operator.
Likewise, the term Fb 2 <6x1 in Eq. 2 is the 6D spatial force acting on the CM
of {b}. Fb contains the e↵ects caused by both inertial (Nb) and aerodynamics
(Tb) forces acting on the body frame:
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In Eq. 4, we have determined an expression that incorporates the Thrust

produced by each independent rotor (Toi) 8oi : 1...4. These aerodynamic terms
govern the generation of rolling (⌧�), pitching (⌧✓) and yawing (⌧ ) torques at
the CM of the UAV, where the term soi,b = 0.18m is the distance between each
rotor to the body frame (see Fig. 3a). Also, Toi depends on the lift (L) and drag
(D) forces acting on each propeller, as shown in Fig. 3b. It can be written as:

Toi = L+D
= 1

2⇢air!
2
oiAprop (CL + CD) ,

(5)

where ⇢air = 1.20Kgm3 is the density of air, !oi, 8oi : 1...4 is the rotor speed,
Aprop = 0.013m2 is the propeller transversal area, CL is the lift coe�cient and
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Algorithm 1 EoM Computation
Step 1: Aerodynamic forces
Read the rotors speed from encoders: !oi, 8oi : 1...4
Calculate both lift and drag forces acting on each propeller:
L 1

2CL⇢air!
2
oiAprop,

D  1
2CD⇢air!

2
oiAprop

Calculate the Thrust produced by each rotor: Toi = L+D 8oi : 1...4

Calculate net Thrust produced at CM: Tb =
4P

oi=1
Toi

Rotational forces (rolling, pitching and yawing)torques onto the body frame:
⌧�  soi,cmĵ (T4 � T3)
⌧✓  soi,cm î (T1 � T2)
⌧  ⌧3 + ⌧4 � ⌧1 � ⌧2
Linear forces acting onto the body frame:
fb,x  (s s�+ c s✓c�)Tb

fb,y  (�c s�+ s s✓c�)Tb

fb,z  (�c c�)Tb

6D Aerodynamic Forces: [⌧� ⌧✓ ⌧ fb,x fb,y fb,z]
T

Step 2: Inertial forces

Calculate 6D inertial operator: Ib =
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Jb 0
0 mU
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Calculate inertial terms:
Nb,x  ✓̇ ̇ [Iyy � Izz]
Nb,y  �̇ ̇ [Izz � Ixx]
Nb,z  ✓̇�̇ [Ixx � Iyy]
fb,z  mg � cos( )cos(�)Tb

Calculate 6D Forces: Fb  [Nb,x + ⌧� Nb,y + ⌧✓ Nb,z + ⌧ fb,x fb,y fb,z]
T

Step 3: 6D Equations of Motion (EoM)
V̇b  I�1

b [Fb � İbVb]
Return V̇b

CD is the drag coe�cient. As shown in Fig. 3b, we have estimated both values
as CL = 1.6 and CD = 0.042 respectively. In this sense, the net vertical Thrust
(Tb) generated at the CM of the UAV can be calculated as:

Tb =
4X

oi=1

Toi (6)

As observed in Eq. 4, Tb governs the generation of the linear forces. The
expressions s , c denote sin( ) and cos( ) respectively. Finally, the term
m = 0.43Kg is the mass of the UAV and g = 9.81ms�2 is the gravitational
acceleration. In the forthcoming section, we will derive the control strategy to
regulate the angular motions precisely. Since our control approach will depend
on the UAV model, we introduce the computational steps to calculate the EoM
in Algorithm 1.

u1
u2

u3

u4

Wind effect
model

low-level control
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as CL = 1.6 and CD = 0.042 respectively. In this sense, the net vertical Thrust
(Tb) generated at the CM of the UAV can be calculated as:
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As observed in Eq. 4, Tb governs the generation of the linear forces. The
expressions s , c denote sin( ) and cos( ) respectively. Finally, the term
m = 0.43Kg is the mass of the UAV and g = 9.81ms�2 is the gravitational
acceleration. In the forthcoming section, we will derive the control strategy to
regulate the angular motions precisely. Since our control approach will depend
on the UAV model, we introduce the computational steps to calculate the EoM
in Algorithm 1.
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In Eq. 17, the integration of the error can be eliminated since the control law
in Eq. 16 already ensures zero steady-state error for e�. Replacing ė2 = e2�kpe�
in Eq. 16:

u� = Ixx[kp(e2 � kpe� � ki
R
e�) + �̈d + kie� � e2 + kpe�]

= Ixx[e�(kp � ki � k2p) + e2(kp � 1)� kpki
R
e�) + �̈d]

(18)

Equation 18 presents the control law to regulate �. This controller allows
zero steady-state error for roll via

R
e�, it is sensitive to small variations in roll

rate via e2, and it directly depends on the UAV model via the DAF term �̈d

(Algorithm 1). By following the same structure in Eq. 18, the control law to
regulate the pitch angular motion (✓) is:

u✓ = Iyy[e✓(kp,2 � ki,2 � k2p,2) + e2(kp,2 � 1)� kp,2ki,2
R
e✓) + ✓̈d] (19)
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silico de Cultivos Agŕıcolas Sostenibles (Infraestructura y validación en Arroz
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Non-linear attitude control

Our UAV comes with an integrated PID-based autopilot. As detailed in Fig.1,
three closed-loop controllers are needed to regulate: (i) the X-Y position based
on GPS feedback, (ii) the Z altitude based on barometric pressure and laser
readings (pointing downwards), and (iii) the �, ✓, attitude based on IMU data.

For this application, our UAV is constantly subjected to large wind dis-
turbances that cause unsteady angular motions and therefore imprecise path
tracking. Also, aerial imagery captured across the crop is clearly a↵ected by the
aforementioned behaviour. To overcome this issue, we propose to replace both
roll and pitch PID-based controllers by a robust Nonlinear Backstepping Control
in order to obtain accurate path tracking by rejecting wind disturbances faster.

The classical backstepping method has several advantages. It can explicitly
take into account the nonlinearities of the UAV model defined in Eq. 2, and fore-
most, a virtual control law can be incorporated to specifically regulate angular
accelerations. In this regard, we have derived a Desired Acceleration Function
(DAF) for roll and pitch. This enhanced controller is called Backstepping+DAF.
Our goal is to use the dynamics EoM defined in Algorithm 1 within the control
law in order to overcome against abrupt angular acceleration changes, concretely
for roll and pitch. The DAF terms make the control law more energetic to reject
wind disturbances faster.

The backstepping control supports on the Lyapunov stability concept that
guarantee asymptotic stabilization around equilibrium points. For our applica-
tion, we require both roll � a pitch ✓ angles to remain in zero i.e. e� = �d��! 0
and e✓ = ✓d � ✓ ! 0. However, our control law has to be sensitive to small
changes in both angular motions, therefore, an error dynamics could be defined
as a function of the angular rates, as:

ė� = �̇d � !x,
ė✓ = ✓̇d � !y

(7)

In Eq. 7, both !x and !y are measured by the IMU sensor onboard the UAV.
The goal is to obtain a desired angular acceleration terms within the control law
to account for small angular rate changes. These terms are called DAF (Desired
Acceleration Function):

�̈d = f(�, �̇, Fb)
=

⇥
1 0 0 0 0 0

⇤
V̇b,

✓̈d = f(✓, ✓̇, Fb)
=

⇥
0 1 0 0 0 0

⇤
V̇b

(8)

Both DAF terms �̈d and ✓̈d are extracted from the spatial acceleration V̇b 2
<6x1 computed in Algorithm 1. To make explicit the DAF terms from Eq. 8
within the backstepping, in the following we focus on deriving the control law
for roll (u�).

From Eq. 6, we introduce a virtual control law that governs the error dynam-
ics, yielding a second tracking error e2 = !d

x � !x where �̇d ! !d
x. In this sense,
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In Eq. 17, the integration of the error can be eliminated since the control law
in Eq. 16 already ensures zero steady-state error for e�. Replacing ė2 = e2�kpe�
in Eq. 16:

u� = Ixx[kp(e2 � kpe� � ki
R
e�) + �̈d + kie� � e2 + kpe�]

= Ixx[e�(kp � ki � k2p) + e2(kp � 1)� kpki
R
e�) + �̈d]

(18)

Equation 18 presents the control law to regulate �. This controller allows
zero steady-state error for roll via

R
e�, it is sensitive to small variations in roll

rate via e2, and it directly depends on the UAV model via the DAF term �̈d

(Algorithm 1). By following the same structure in Eq. 18, the control law to
regulate the pitch angular motion (✓) is:

u✓ = Iyy[e✓(kp,2 � ki,2 � k2p,2) + e2(kp,2 � 1)� kp,2ki,2
R
e✓) + ✓̈d] (19)
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X-Y position control

Design parameters are ! z ,"z ,"5( ) > 0 , whose values are set in Table IV (subsection 4.3.6).

4.3.4. Backstepping Position Control

Position tracking errors for Px and Py are:

Control laws are then introduced in Eq. (4.36), being ! x ,! y ,"x ,"y ,"6 ,"7( ) > 0 .

4.3.5. Backstepping+FST Stability Analysis

Stability analysis of backstepping+FST is performed using Lyapunov theory. The following 
candidate Lyapunov function is chosen: 

Equation (4.37) includes the angular (roll in this case) tracking error e! , the angular rate error 

e2 =! x
d "! x ,  and the integration action of tracking error e! . Deriving Eq. (4.37) and using the 

following replacements: 
 
!e! = "#!e! " $! e!% + e2  and   !e2 = !e" ! #2e2 , yields:

From the definition of the candidate Lyapunov function in Eq. (4.37) and the fact that 

 
!V ! 0;" e# ,e2( ) guarantees the boundedness of e! , its integral e!" , and the rate error e2 . As 

consequence, the reference angular value ! d and the angular position !  are also bounded due to 

the Eq. (4.24), where e! = !
d "! . Global asymptotic stability is also ensured from the positive 

definition of V ,  in which  
 
!V e! ,e2( ) < 0;" e! ,e2( ) # 0 and  

!V 0( ) = 0  (LaSalle theorem).  

4.3.6. Backstepping+FST Simulation Results

Using Simulink, this section presents some initial testing of the Backstepping+FST for attitude 
control. As shown in Fig. 4.6, MAV dynamics, aerodynamics, and motor dynamics are also 

(4.35)
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     e6 = " xex + #x ex$ + !Px
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     ey = Py
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     e7 = " yey + #y ey$ + !Py
d ! !Py

(4.36)
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2 " 0
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Replacing 
 
!e! = "#!e! " $! e!% + e2 into  !e2 in Eq. (4.27): 

In the case of the DraganFlyer quadrotor, extracting from Eq. (3.38) the dynamics terms 
corresponding to the roll acceleration term  

!!!  and replacing them into Eq. (4.29):

Solving Eq. (4.30) for !" = u" which is the control law for achieving roll stabilization being the 

desirable dynamics for the angular speed tracking error  !e2 = !e" ! #2e2 :

where !" ,#" ,#2( ) > 0 are the control parameters of the backstepping+FST method. Table IV (in 

subsection 4.3.6) will show the numerical values used for initial simulation testing. Finally, the 
desired angular acceleration term  

!!! d in Eq. (4.31) is replaced by the Frenet-Serret formulas showed 

in Eq. (4.23). Pitch and yaw control is derived by applying the same procedure. Control laws are:

Equations (4.31) and (4.32) show the Backstepping+FST methodology. The aim of addressing a 
new term within the single backstepping was to make the control effort more energetic in terms of 
angular response. This new term, called  

!!! d corresponds to a desired acceleration function that 

strictly depends on the velocity and acceleration of the vehicle. As already mentioned, the Frenet 
Serret formulas were used to obtain that function. The hypothesis of improving attitude control 
when the MAVs are maneuvering at -high- speeds with aggressive changes in orientation rates will 
confirm via simulation and experimental testing. For instance, next subsections will show classic 
backstepping approach applied for altitude and position control.     

4.3.3. Backstepping Altitude Control

Using the same procedure showed in the previous subsection, altitude tracking error and its 
dynamics are:

The control law is then defined as:

(4.29)
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Attitude loop

Position loop DGPS: Lat-Long (X,Y)

Z altitude control

Replacing 
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corresponding to the roll acceleration term  

!!!  and replacing them into Eq. (4.29):

Solving Eq. (4.30) for !" = u" which is the control law for achieving roll stabilization being the 

desirable dynamics for the angular speed tracking error  !e2 = !e" ! #2e2 :

where !" ,#" ,#2( ) > 0 are the control parameters of the backstepping+FST method. Table IV (in 

subsection 4.3.6) will show the numerical values used for initial simulation testing. Finally, the 
desired angular acceleration term  

!!! d in Eq. (4.31) is replaced by the Frenet-Serret formulas showed 

in Eq. (4.23). Pitch and yaw control is derived by applying the same procedure. Control laws are:

Equations (4.31) and (4.32) show the Backstepping+FST methodology. The aim of addressing a 
new term within the single backstepping was to make the control effort more energetic in terms of 
angular response. This new term, called  

!!! d corresponds to a desired acceleration function that 

strictly depends on the velocity and acceleration of the vehicle. As already mentioned, the Frenet 
Serret formulas were used to obtain that function. The hypothesis of improving attitude control 
when the MAVs are maneuvering at -high- speeds with aggressive changes in orientation rates will 
confirm via simulation and experimental testing. For instance, next subsections will show classic 
backstepping approach applied for altitude and position control.     

4.3.3. Backstepping Altitude Control

Using the same procedure showed in the previous subsection, altitude tracking error and its 
dynamics are:
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Design parameters are ! z ,"z ,"5( ) > 0 , whose values are set in Table IV (subsection 4.3.6).

4.3.4. Backstepping Position Control

Position tracking errors for Px and Py are:

Control laws are then introduced in Eq. (4.36), being ! x ,! y ,"x ,"y ,"6 ,"7( ) > 0 .

4.3.5. Backstepping+FST Stability Analysis

Stability analysis of backstepping+FST is performed using Lyapunov theory. The following 
candidate Lyapunov function is chosen: 

Equation (4.37) includes the angular (roll in this case) tracking error e! , the angular rate error 

e2 =! x
d "! x ,  and the integration action of tracking error e! . Deriving Eq. (4.37) and using the 

following replacements: 
 
!e! = "#!e! " $! e!% + e2  and   !e2 = !e" ! #2e2 , yields:

From the definition of the candidate Lyapunov function in Eq. (4.37) and the fact that 

 
!V ! 0;" e# ,e2( ) guarantees the boundedness of e! , its integral e!" , and the rate error e2 . As 

consequence, the reference angular value ! d and the angular position !  are also bounded due to 

the Eq. (4.24), where e! = ! d "! . Global asymptotic stability is also ensured from the positive 

definition of V ,  in which  
 
!V e! ,e2( ) < 0;" e! ,e2( ) # 0 and  

!V 0( ) = 0  (LaSalle theorem).  

4.3.6. Backstepping+FST Simulation Results

Using Simulink, this section presents some initial testing of the Backstepping+FST for attitude 
control. As shown in Fig. 4.6, MAV dynamics, aerodynamics, and motor dynamics are also 
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Take-off and
Landing

Trajectory 
Planning

Trajectory 
Planning

Mission
parameters

Pressure/Laser/camera: (Z)

q UAV/drone –> 6 DoF (12 variables de estado)
q Sistema altamente no-lineal (variables de estado acopladas)
q Sistema sub-actuado
q Cinemática: Angulos Euler, Dinámica: Newton Euler 6D, Aerodinámica: Elementos Finitos 
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Fig. 3. Physical parameters used for UAV modeling and control. (a) Equations of Mo-
tion are derived using three frames of reference: the inertial frame {i}, the body frame
{b} located at the center of mass, and the rotors frame {oi}, 8oi : 1...4. Each rotor
generates a vertical Thrust (Toi) that depends on the rotor angular speed (!oi) and the
geometrical properties of the propeller blades. (b) Blade properties for deriving aerody-
namics equations. We used Blade-Element-Theory computation to calculate both Lift
and Drag coe�cients using the FoilSim III simulator provided by NASA [1]. Our UAV
has a Lift coe�cient of CL = 1.6 and a Drag coe�cient of CD = 0.042, since l/r = 0.7.
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where Jb 2 <3x3 is the inertial tensor with diag(Ixx, Iyy, Izz) being the mo-
ments of inertia, m is the mass of the UAV and U is a 3 ⇥ 3 identity operator.
Likewise, the term Fb 2 <6x1 in Eq. 2 is the 6D spatial force acting on the CM
of {b}. Fb contains the e↵ects caused by both inertial (Nb) and aerodynamics
(Tb) forces acting on the body frame:

Fb =


Nb

fb

�
=

2

6666664
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(4)
In Eq. 4, we have determined an expression that incorporates the Thrust

produced by each independent rotor (Toi) 8oi : 1...4. These aerodynamic terms
govern the generation of rolling (⌧�), pitching (⌧✓) and yawing (⌧ ) torques at
the CM of the UAV, where the term soi,b = 0.18m is the distance between each
rotor to the body frame (see Fig. 3a). Also, Toi depends on the lift (L) and drag
(D) forces acting on each propeller, as shown in Fig. 3b. It can be written as:

Toi = L+D
= 1

2
⇢air!2

oiAprop (CL + CD) ,
(5)

where ⇢air = 1.20Kgm3 is the density of air, !oi, 8oi : 1...4 is the rotor speed,
Aprop = 0.013m2 is the propeller transversal area, CL is the lift coe�cient and
CD is the drag coe�cient. As shown in Fig. 3b, we have estimated both values
as CL = 1.6 and CD = 0.042 respectively. In this sense, the net vertical Thrust
(Tb) generated at the CM of the UAV can be calculated as:

Tb =
4X

oi=1

Toi (6)

As observed in Eq. 4, Tb governs the generation of the linear forces. The
expressions s , c denote sin( ) and cos( ) respectively. Finally, the term
m = 0.43Kg is the mass of the UAV and g = 9.81ms�2 is the gravitational
acceleration. In the forthcoming section, we will derive the control strategy to
regulate the angular motions precisely. Since our control approach will depend
on the UAV model, we introduce the computational steps to calculate the EoM
in Algorithm 1.

Non-linear attitude control

Our UAV comes with an integrated PID-based autopilot. As detailed in Fig.1,
three closed-loop controllers are needed to regulate: (i) the X-Y position based
on GPS feedback, (ii) the Z altitude based on barometric pressure and laser

§ Fuerza 6D:
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where Jb 2 <3x3 is the inertial tensor with diag(Ixx, Iyy, Izz) being the mo-
ments of inertia, m is the mass of the UAV and U is a 3 ⇥ 3 identity operator.
Likewise, the term Fb 2 <6x1 in Eq. 2 is the 6D spatial force acting on the CM
of {b}. Fb contains the e↵ects caused by both inertial (Nb) and aerodynamics
(Tb) forces acting on the body frame:

Fb =


Nb

fb

�
=

2

6666664

(Nb,x) + (⌧�)
(Nb,y) + (⌧✓)
(Nb,z) + (⌧ )

fb,x
fb,y
fb,z

3

7777775
=

2

6666664

(✓̇ ̇ [Iyy � Izz]) + soi,bĵ(T4 � T3)
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(✓̇�̇ [Ixx � Iyy]) + (T3 + T4 � T1 � T2)
(s s�+ c s✓c�)Tb

(�c s�+ s s✓c�)Tb

mg � (c c�)Tb

3

7777775

(4)
In Eq. 4, we have determined an expression that incorporates the Thrust

produced by each independent rotor (Toi) 8oi : 1...4. These aerodynamic terms
govern the generation of rolling (⌧�), pitching (⌧✓) and yawing (⌧ ) torques at
the CM of the UAV, where the term soi,b = 0.18m is the distance between each
rotor to the body frame (see Fig. 3a). Also, Toi depends on the lift (L) and drag
(D) forces acting on each propeller, as shown in Fig. 3b. It can be written as:

Toi = L+D
= 1

2
⇢air!2

oiAprop (CL + CD) ,
(5)

where ⇢air = 1.20Kgm3 is the density of air, !oi, 8oi : 1...4 is the rotor speed,
Aprop = 0.013m2 is the propeller transversal area, CL is the lift coe�cient and
CD is the drag coe�cient. As shown in Fig. 3b, we have estimated both values
as CL = 1.6 and CD = 0.042 respectively. In this sense, the net vertical Thrust
(Tb) generated at the CM of the UAV can be calculated as:

Tb =
4X

oi=1

Toi (6)

As observed in Eq. 4, Tb governs the generation of the linear forces. The
expressions s , c denote sin( ) and cos( ) respectively. Finally, the term
m = 0.43Kg is the mass of the UAV and g = 9.81ms�2 is the gravitational
acceleration. In the forthcoming section, we will derive the control strategy to
regulate the angular motions precisely. Since our control approach will depend
on the UAV model, we introduce the computational steps to calculate the EoM
in Algorithm 1.

Non-linear attitude control

Our UAV comes with an integrated PID-based autopilot. As detailed in Fig.1,
three closed-loop controllers are needed to regulate: (i) the X-Y position based
on GPS feedback, (ii) the Z altitude based on barometric pressure and laser
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(✓̇�̇ [Ixx � Iyy]) + (T3 + T4 � T1 � T2)
(s s�+ c s✓c�)Tb

(�c s�+ s s✓c�)Tb

mg � (c c�)Tb

3

7777775

(4)
In Eq. 4, we have determined an expression that incorporates the Thrust

produced by each independent rotor (Toi) 8oi : 1...4. These aerodynamic terms
govern the generation of rolling (⌧�), pitching (⌧✓) and yawing (⌧ ) torques at
the CM of the UAV, where the term soi,b = 0.18m is the distance between each
rotor to the body frame (see Fig. 3a). Also, Toi depends on the lift (L) and drag
(D) forces acting on each propeller, as shown in Fig. 3b. It can be written as:

Toi = L+D
= 1

2
⇢air!2

oiAprop (CL + CD) ,
(5)
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m = 0.43Kg is the mass of the UAV and g = 9.81ms�2 is the gravitational
acceleration. In the forthcoming section, we will derive the control strategy to
regulate the angular motions precisely. Since our control approach will depend
on the UAV model, we introduce the computational steps to calculate the EoM
in Algorithm 1.
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Algorithm 1 EoM Computation
Step 1: Aerodynamic forces
Read the rotors speed from encoders: !oi, 8oi : 1...4
Calculate both lift and drag forces acting on each propeller:
L 1

2CL⇢air!
2
oiAprop,

D  1
2CD⇢air!

2
oiAprop

Calculate the Thrust produced by each rotor: Toi = L+D 8oi : 1...4

Calculate net Thrust produced at CM: Tb =
4P

oi=1
Toi

Rotational forces (rolling, pitching and yawing)torques onto the body frame:
⌧�  soi,cmĵ (T4 � T3)
⌧✓  soi,cm î (T1 � T2)
⌧  ⌧3 + ⌧4 � ⌧1 � ⌧2
Linear forces acting onto the body frame:
fb,x  (s s�+ c s✓c�)Tb

fb,y  (�c s�+ s s✓c�)Tb

fb,z  (�c c�)Tb

6D Aerodynamic Forces: [⌧� ⌧✓ ⌧ fb,x fb,y fb,z]
T

Step 2: Inertial forces

Calculate 6D inertial operator: Ib =


Jb 0
0 mU

�

Calculate inertial terms:
Nb,x  ✓̇ ̇ [Iyy � Izz]
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Step 3: 6D Equations of Motion (EoM)
V̇b  I�1

b [Fb � İbVb]
Return V̇b

readings (pointing downwards), and (iii) the �, ✓, attitude based on IMU data.
For this application, our UAV is constantly subjected to wind disturbances that
cause unsteady angular motions and therefore imprecise trajectory tracking.
Also, aerial imagery captured across the crop is clearly a↵ected by the afore-
mentioned behaviour. To overcome this issue, we propose to replace both roll
and pitch PID-based controllers by a robust Nonlinear Backstepping (BS) Con-
trol in order to obtain accurate path tracking by rejecting wind disturbances
faster.

The classical BS method has several advantages. It can explicitly take into
account the nonlinearities of the UAV model defined in Eq. 2, and foremost, a
virtual control law can be incorporated to specifically regulate angular acceler-
ations. In this regard, we have derived a Desired Acceleration Function (DAF)
for roll and pitch. This enhanced controller is called Backstepping+DAF. Our
goal is to use the dynamics EoM defined in Algorithm 1 within the control law
in order to overcome against abrupt angular acceleration changes, concretely for

ψ

φ

θ

6D Dynamics
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Both rotational !̇ and translational �̇ accelerations could be derived from
the Newton-Euler formulation, as:
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where ⇢air = 1.20Kgm3 is the density of air, !oi, 8oi : 1...4 is the rotor speed,
Aprop = 0.013m2 is the propeller transversal area, CL is the lift coe�cient and
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Algorithm 1 EoM Computation
Step 1: Aerodynamic forces
Read the rotors speed from encoders: !oi, 8oi : 1...4
Calculate both lift and drag forces acting on each propeller:
L 1

2CL⇢air!
2
oiAprop,

D  1
2CD⇢air!

2
oiAprop

Calculate the Thrust produced by each rotor: Toi = L+D 8oi : 1...4

Calculate net Thrust produced at CM: Tb =
4P

oi=1
Toi

Rotational forces (rolling, pitching and yawing)torques onto the body frame:
⌧�  soi,cmĵ (T4 � T3)
⌧✓  soi,cm î (T1 � T2)
⌧  ⌧3 + ⌧4 � ⌧1 � ⌧2
Linear forces acting onto the body frame:
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fb,y  (�c s�+ s s✓c�)Tb

fb,z  (�c c�)Tb

6D Aerodynamic Forces: [⌧� ⌧✓ ⌧ fb,x fb,y fb,z]
T

Step 2: Inertial forces

Calculate 6D inertial operator: Ib =


Jb 0
0 mU

�

Calculate inertial terms:
Nb,x  ✓̇ ̇ [Iyy � Izz]
Nb,y  �̇ ̇ [Izz � Ixx]
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fb,z  mg � cos( )cos(�)Tb

Calculate 6D Forces: Fb  [Nb,x + ⌧� Nb,y + ⌧✓ Nb,z + ⌧ fb,x fb,y fb,z]
T

Step 3: 6D Equations of Motion (EoM)
V̇b  I�1

b [Fb � İbVb]
Return V̇b

CD is the drag coe�cient. As shown in Fig. 3b, we have estimated both values
as CL = 1.6 and CD = 0.042 respectively. In this sense, the net vertical Thrust
(Tb) generated at the CM of the UAV can be calculated as:

Tb =
4X

oi=1

Toi (6)

As observed in Eq. 4, Tb governs the generation of the linear forces. The
expressions s , c denote sin( ) and cos( ) respectively. Finally, the term
m = 0.43Kg is the mass of the UAV and g = 9.81ms�2 is the gravitational
acceleration. In the forthcoming section, we will derive the control strategy to
regulate the angular motions precisely. Since our control approach will depend
on the UAV model, we introduce the computational steps to calculate the EoM
in Algorithm 1.
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m = 0.43Kg is the mass of the UAV and g = 9.81ms�2 is the gravitational
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regulate the angular motions precisely. Since our control approach will depend
on the UAV model, we introduce the computational steps to calculate the EoM
in Algorithm 1.
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on the UAV model, we introduce the computational steps to calculate the EoM
in Algorithm 1.
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⌧�  soi,cmĵ (T4 � T3)
⌧✓  soi,cm î (T1 � T2)
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In Eq. 17, the integration of the error can be eliminated since the control law
in Eq. 16 already ensures zero steady-state error for e�. Replacing ė2 = e2�kpe�
in Eq. 16:

u� = Ixx[kp(e2 � kpe� � ki
R
e�) + �̈d + kie� � e2 + kpe�]

= Ixx[e�(kp � ki � k2p) + e2(kp � 1)� kpki
R
e�) + �̈d]

(18)

Equation 18 presents the control law to regulate �. This controller allows
zero steady-state error for roll via

R
e�, it is sensitive to small variations in roll

rate via e2, and it directly depends on the UAV model via the DAF term �̈d

(Algorithm 1). By following the same structure in Eq. 18, the control law to
regulate the pitch angular motion (✓) is:

u✓ = Iyy[e✓(kp,2 � ki,2 � k2p,2) + e2(kp,2 � 1)� kp,2ki,2
R
e✓) + ✓̈d] (19)
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Non-linear attitude control

Our UAV comes with an integrated PID-based autopilot. As detailed in Fig.1,
three closed-loop controllers are needed to regulate: (i) the X-Y position based
on GPS feedback, (ii) the Z altitude based on barometric pressure and laser
readings (pointing downwards), and (iii) the �, ✓, attitude based on IMU data.

For this application, our UAV is constantly subjected to large wind dis-
turbances that cause unsteady angular motions and therefore imprecise path
tracking. Also, aerial imagery captured across the crop is clearly a↵ected by the
aforementioned behaviour. To overcome this issue, we propose to replace both
roll and pitch PID-based controllers by a robust Nonlinear Backstepping Control
in order to obtain accurate path tracking by rejecting wind disturbances faster.

The classical backstepping method has several advantages. It can explicitly
take into account the nonlinearities of the UAV model defined in Eq. 2, and fore-
most, a virtual control law can be incorporated to specifically regulate angular
accelerations. In this regard, we have derived a Desired Acceleration Function
(DAF) for roll and pitch. This enhanced controller is called Backstepping+DAF.
Our goal is to use the dynamics EoM defined in Algorithm 1 within the control
law in order to overcome against abrupt angular acceleration changes, concretely
for roll and pitch. The DAF terms make the control law more energetic to reject
wind disturbances faster.

The backstepping control supports on the Lyapunov stability concept that
guarantee asymptotic stabilization around equilibrium points. For our applica-
tion, we require both roll � a pitch ✓ angles to remain in zero i.e. e� = �d��! 0
and e✓ = ✓d � ✓ ! 0. However, our control law has to be sensitive to small
changes in both angular motions, therefore, an error dynamics could be defined
as a function of the angular rates, as:

ė� = �̇d � !x,
ė✓ = ✓̇d � !y

(7)

In Eq. 7, both !x and !y are measured by the IMU sensor onboard the UAV.
The goal is to obtain a desired angular acceleration terms within the control law
to account for small angular rate changes. These terms are called DAF (Desired
Acceleration Function):

�̈d = f(�, �̇, Fb)
=

⇥
1 0 0 0 0 0

⇤
V̇b,

✓̈d = f(✓, ✓̇, Fb)
=

⇥
0 1 0 0 0 0

⇤
V̇b

(8)

Both DAF terms �̈d and ✓̈d are extracted from the spatial acceleration V̇b 2
<6x1 computed in Algorithm 1. To make explicit the DAF terms from Eq. 8
within the backstepping, in the following we focus on deriving the control law
for roll (u�).

From Eq. 6, we introduce a virtual control law that governs the error dynam-
ics, yielding a second tracking error e2 = !d

x � !x where �̇d ! !d
x. In this sense,
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In Eq. 17, the integration of the error can be eliminated since the control law
in Eq. 16 already ensures zero steady-state error for e�. Replacing ė2 = e2�kpe�
in Eq. 16:

u� = Ixx[kp(e2 � kpe� � ki
R
e�) + �̈d + kie� � e2 + kpe�]

= Ixx[e�(kp � ki � k2p) + e2(kp � 1)� kpki
R
e�) + �̈d]

(18)

Equation 18 presents the control law to regulate �. This controller allows
zero steady-state error for roll via

R
e�, it is sensitive to small variations in roll

rate via e2, and it directly depends on the UAV model via the DAF term �̈d

(Algorithm 1). By following the same structure in Eq. 18, the control law to
regulate the pitch angular motion (✓) is:

u✓ = Iyy[e✓(kp,2 � ki,2 � k2p,2) + e2(kp,2 � 1)� kp,2ki,2
R
e✓) + ✓̈d] (19)

Wind disturbances

4 AI-based NIR image Processing

4.1 GrabCut Segmentation

4.2 VI Feature Extraction for N dynamics

5 Field Report: Nitrogen Estimations

6 Conclusions

Acknowledgement

This work was funded by the OMICAS program: Optimización Multiescala In-
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X-Y position control

Design parameters are ! z ,"z ,"5( ) > 0 , whose values are set in Table IV (subsection 4.3.6).

4.3.4. Backstepping Position Control

Position tracking errors for Px and Py are:

Control laws are then introduced in Eq. (4.36), being ! x ,! y ,"x ,"y ,"6 ,"7( ) > 0 .

4.3.5. Backstepping+FST Stability Analysis

Stability analysis of backstepping+FST is performed using Lyapunov theory. The following 
candidate Lyapunov function is chosen: 

Equation (4.37) includes the angular (roll in this case) tracking error e! , the angular rate error 

e2 =! x
d "! x ,  and the integration action of tracking error e! . Deriving Eq. (4.37) and using the 

following replacements: 
 
!e! = "#!e! " $! e!% + e2  and   !e2 = !e" ! #2e2 , yields:

From the definition of the candidate Lyapunov function in Eq. (4.37) and the fact that 

 
!V ! 0;" e# ,e2( ) guarantees the boundedness of e! , its integral e!" , and the rate error e2 . As 

consequence, the reference angular value ! d and the angular position !  are also bounded due to 

the Eq. (4.24), where e! = ! d "! . Global asymptotic stability is also ensured from the positive 

definition of V ,  in which  
 
!V e! ,e2( ) < 0;" e! ,e2( ) # 0 and  

!V 0( ) = 0  (LaSalle theorem).  

4.3.6. Backstepping+FST Simulation Results

Using Simulink, this section presents some initial testing of the Backstepping+FST for attitude 
control. As shown in Fig. 4.6, MAV dynamics, aerodynamics, and motor dynamics are also 

(4.35)

 

     ex = Px
d ! Px     

     e6 = " xex + #x ex$ + !Px
d ! !Px  

     ey = Py
d ! Py     

     e7 = " yey + #y ey$ + !Py
d ! !Py

(4.36)
ux =

mT

!
ex 1"# x

2 + $x( ) + e6 # x + $6( ) "# x$x ex %( )d%&'
(

)
*

uy = "
mT

+
ey 1"# y

2 + $y( ) + e7 # y + $7( ) "# y$y ey %( )d%&'
(

)
*
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(4.38)

 

!V = e! !e! + e2 !e2 + e!
2 " 0

  = e! #$!e! # %!e! + e2&' () + e2 #e! # %2e2&' () + e!
2

  = #$!e!
2 # %!e!

2 + e!e2 # e!e2 # %2e2
2 + e!

2
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2 # %2e2

2 " 0

Replacing 
 
!e! = "#!e! " $! e!% + e2 into  !e2 in Eq. (4.27): 

In the case of the DraganFlyer quadrotor, extracting from Eq. (3.38) the dynamics terms 
corresponding to the roll acceleration term  

!!!  and replacing them into Eq. (4.29):

Solving Eq. (4.30) for !" = u" which is the control law for achieving roll stabilization being the 

desirable dynamics for the angular speed tracking error  !e2 = !e" ! #2e2 :

where !" ,#" ,#2( ) > 0 are the control parameters of the backstepping+FST method. Table IV (in 

subsection 4.3.6) will show the numerical values used for initial simulation testing. Finally, the 
desired angular acceleration term  

!!! d in Eq. (4.31) is replaced by the Frenet-Serret formulas showed 

in Eq. (4.23). Pitch and yaw control is derived by applying the same procedure. Control laws are:

Equations (4.31) and (4.32) show the Backstepping+FST methodology. The aim of addressing a 
new term within the single backstepping was to make the control effort more energetic in terms of 
angular response. This new term, called  

!!! d corresponds to a desired acceleration function that 

strictly depends on the velocity and acceleration of the vehicle. As already mentioned, the Frenet 
Serret formulas were used to obtain that function. The hypothesis of improving attitude control 
when the MAVs are maneuvering at -high- speeds with aggressive changes in orientation rates will 
confirm via simulation and experimental testing. For instance, next subsections will show classic 
backstepping approach applied for altitude and position control.     

4.3.3. Backstepping Altitude Control

Using the same procedure showed in the previous subsection, altitude tracking error and its 
dynamics are:

The control law is then defined as:

(4.29)
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Design parameters are ! z ,"z ,"5( ) > 0 , whose values are set in Table IV (subsection 4.3.6).

4.3.4. Backstepping Position Control

Position tracking errors for Px and Py are:

Control laws are then introduced in Eq. (4.36), being ! x ,! y ,"x ,"y ,"6 ,"7( ) > 0 .

4.3.5. Backstepping+FST Stability Analysis

Stability analysis of backstepping+FST is performed using Lyapunov theory. The following 
candidate Lyapunov function is chosen: 

Equation (4.37) includes the angular (roll in this case) tracking error e! , the angular rate error 

e2 =! x
d "! x ,  and the integration action of tracking error e! . Deriving Eq. (4.37) and using the 
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From the definition of the candidate Lyapunov function in Eq. (4.37) and the fact that 
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4.3.6. Backstepping+FST Simulation Results

Using Simulink, this section presents some initial testing of the Backstepping+FST for attitude 
control. As shown in Fig. 4.6, MAV dynamics, aerodynamics, and motor dynamics are also 
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Trajectory 
Planning

Trajectory 
Planning

Mission
parameters

Pressure/Laser/camera: (Z)

q Los rotores normalmente se modelan como un 
sist. 1er orden que relaciona v/i -->⍵

q Si el modelo del UAV obvia la aerodinámica, el 
modelo de motor debe relacional i -->

q El efecto viento, se modela como un vector 
(magnitud=velocidad viento, dirección= rotor) 
que afecta el empuje de cada rotor.



Control	de	vuelo	de	alta	precisión

ψ

φ

θ

6D Dynamics

Title Suppressed Due to Excessive Length 5

V̇b =


!̇b

�̇b

�
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6666664

�̈
✓̈
 ̈
ẍb

ÿb
z̈b

3

7777775
(1)

Both rotational !̇ and translational �̇ accelerations could be derived from
the Newton-Euler formulation, as:

V̇b = I�1
b [Fb � İbVb], (2)

being Ib 2 <6x6 the spatial inertia operator calculated at the Center of Mass
(CM) of the body frame {b}. It can be expressed as:

Ib =


Jb 0
0 mU

�
=

2

6666664

Ixx 0 0 0 0 0
0 Iyy 0 0 0 0
0 0 Izz 0 0 0
0 0 0 m 0 0
0 0 0 0 m 0
0 0 0 0 0 m

3

7777775
, (3)

where Jb 2 <3x3 is the inertial tensor with diag(Ixx, Iyy, Izz) being the mo-
ments of inertia, m is the mass of the UAV and U is a 3 ⇥ 3 identity operator.
Likewise, the term Fb 2 <6x1 in Eq. 2 is the 6D spatial force acting on the CM
of {b}. Fb contains the e↵ects caused by both inertial (Nb) and aerodynamics
(Tb) forces acting on the body frame:

Fb =


Nb

fb

�
=

2

6666664

(Nb,x) + (⌧�)
(Nb,y) + (⌧✓)
(Nb,z) + (⌧ )

fb,x
fb,y
fb,z

3

7777775
=

2

6666664

(✓̇ ̇ [Iyy � Izz]) + soi,bĵ(T4 � T3)
(�̇ ̇ [Izz � Ixx]) + soi,bî(T1 � T2)

(✓̇�̇ [Ixx � Iyy]) + (T3 + T4 � T1 � T2)
(s s�+ c s✓c�)Tb

(�c s�+ s s✓c�)Tb

mg � (c c�)Tb

3

7777775

(4)
In Eq. 4, we have determined an expression that incorporates the Thrust

produced by each independent rotor (Toi) 8oi : 1...4. These aerodynamic terms
govern the generation of rolling (⌧�), pitching (⌧✓) and yawing (⌧ ) torques at
the CM of the UAV, where the term soi,b = 0.18m is the distance between each
rotor to the body frame (see Fig. 3a). Also, Toi depends on the lift (L) and drag
(D) forces acting on each propeller, as shown in Fig. 3b. It can be written as:

Toi = L+D
= 1

2⇢air!
2
oiAprop (CL + CD) ,

(5)

where ⇢air = 1.20Kgm3 is the density of air, !oi, 8oi : 1...4 is the rotor speed,
Aprop = 0.013m2 is the propeller transversal area, CL is the lift coe�cient and
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Algorithm 1 EoM Computation
Step 1: Aerodynamic forces
Read the rotors speed from encoders: !oi, 8oi : 1...4
Calculate both lift and drag forces acting on each propeller:
L 1

2CL⇢air!
2
oiAprop,

D  1
2CD⇢air!

2
oiAprop

Calculate the Thrust produced by each rotor: Toi = L+D 8oi : 1...4

Calculate net Thrust produced at CM: Tb =
4P

oi=1
Toi

Rotational forces (rolling, pitching and yawing)torques onto the body frame:
⌧�  soi,cmĵ (T4 � T3)
⌧✓  soi,cm î (T1 � T2)
⌧  ⌧3 + ⌧4 � ⌧1 � ⌧2
Linear forces acting onto the body frame:
fb,x  (s s�+ c s✓c�)Tb

fb,y  (�c s�+ s s✓c�)Tb

fb,z  (�c c�)Tb

6D Aerodynamic Forces: [⌧� ⌧✓ ⌧ fb,x fb,y fb,z]
T

Step 2: Inertial forces

Calculate 6D inertial operator: Ib =


Jb 0
0 mU

�

Calculate inertial terms:
Nb,x  ✓̇ ̇ [Iyy � Izz]
Nb,y  �̇ ̇ [Izz � Ixx]
Nb,z  ✓̇�̇ [Ixx � Iyy]
fb,z  mg � cos( )cos(�)Tb

Calculate 6D Forces: Fb  [Nb,x + ⌧� Nb,y + ⌧✓ Nb,z + ⌧ fb,x fb,y fb,z]
T

Step 3: 6D Equations of Motion (EoM)
V̇b  I�1

b [Fb � İbVb]
Return V̇b

CD is the drag coe�cient. As shown in Fig. 3b, we have estimated both values
as CL = 1.6 and CD = 0.042 respectively. In this sense, the net vertical Thrust
(Tb) generated at the CM of the UAV can be calculated as:

Tb =
4X

oi=1

Toi (6)

As observed in Eq. 4, Tb governs the generation of the linear forces. The
expressions s , c denote sin( ) and cos( ) respectively. Finally, the term
m = 0.43Kg is the mass of the UAV and g = 9.81ms�2 is the gravitational
acceleration. In the forthcoming section, we will derive the control strategy to
regulate the angular motions precisely. Since our control approach will depend
on the UAV model, we introduce the computational steps to calculate the EoM
in Algorithm 1.

u1
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u3

u4

Wind effect
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⌧✓  soi,cm î (T1 � T2)
⌧  ⌧3 + ⌧4 � ⌧1 � ⌧2
Linear forces acting onto the body frame:
fb,x  (s s�+ c s✓c�)Tb

fb,y  (�c s�+ s s✓c�)Tb

fb,z  (�c c�)Tb

6D Aerodynamic Forces: [⌧� ⌧✓ ⌧ fb,x fb,y fb,z]
T

Step 2: Inertial forces

Calculate 6D inertial operator: Ib =


Jb 0
0 mU

�

Calculate inertial terms:
Nb,x  ✓̇ ̇ [Iyy � Izz]
Nb,y  �̇ ̇ [Izz � Ixx]
Nb,z  ✓̇�̇ [Ixx � Iyy]
fb,z  mg � cos( )cos(�)Tb

Calculate 6D Forces: Fb  [Nb,x + ⌧� Nb,y + ⌧✓ Nb,z + ⌧ fb,x fb,y fb,z]
T

Step 3: 6D Equations of Motion (EoM)
V̇b  I�1

b [Fb � İbVb]
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Return V̇b

CD is the drag coe�cient. As shown in Fig. 3b, we have estimated both values
as CL = 1.6 and CD = 0.042 respectively. In this sense, the net vertical Thrust
(Tb) generated at the CM of the UAV can be calculated as:

Tb =
4X

oi=1

Toi (6)

As observed in Eq. 4, Tb governs the generation of the linear forces. The
expressions s , c denote sin( ) and cos( ) respectively. Finally, the term
m = 0.43Kg is the mass of the UAV and g = 9.81ms�2 is the gravitational
acceleration. In the forthcoming section, we will derive the control strategy to
regulate the angular motions precisely. Since our control approach will depend
on the UAV model, we introduce the computational steps to calculate the EoM
in Algorithm 1.

6 F. Author et al.

Algorithm 1 EoM Computation
Step 1: Aerodynamic forces
Read the rotors speed from encoders: !oi, 8oi : 1...4
Calculate both lift and drag forces acting on each propeller:
L 1

2CL⇢air!
2
oiAprop,

D  1
2CD⇢air!

2
oiAprop

Calculate the Thrust produced by each rotor: Toi = L+D 8oi : 1...4

Calculate net Thrust produced at CM: Tb =
4P

oi=1
Toi

Rotational forces (rolling, pitching and yawing)torques onto the body frame:
⌧�  soi,cmĵ (T4 � T3)
⌧✓  soi,cm î (T1 � T2)
⌧  ⌧3 + ⌧4 � ⌧1 � ⌧2
Linear forces acting onto the body frame:
fb,x  (s s�+ c s✓c�)Tb

fb,y  (�c s�+ s s✓c�)Tb

fb,z  (�c c�)Tb

6D Aerodynamic Forces: [⌧� ⌧✓ ⌧ fb,x fb,y fb,z]
T

Step 2: Inertial forces

Calculate 6D inertial operator: Ib =


Jb 0
0 mU

�

Calculate inertial terms:
Nb,x  ✓̇ ̇ [Iyy � Izz]
Nb,y  �̇ ̇ [Izz � Ixx]
Nb,z  ✓̇�̇ [Ixx � Iyy]
fb,z  mg � cos( )cos(�)Tb

Calculate 6D Forces: Fb  [Nb,x + ⌧� Nb,y + ⌧✓ Nb,z + ⌧ fb,x fb,y fb,z]
T

Step 3: 6D Equations of Motion (EoM)
V̇b  I�1

b [Fb � İbVb]
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6D Aerodynamic Forces: [⌧� ⌧✓ ⌧ fb,x fb,y fb,z]
T

Step 2: Inertial forces

Calculate 6D inertial operator: Ib =


Jb 0
0 mU

�

Calculate inertial terms:
Nb,x  ✓̇ ̇ [Iyy � Izz]
Nb,y  �̇ ̇ [Izz � Ixx]
Nb,z  ✓̇�̇ [Ixx � Iyy]
fb,z  mg � cos( )cos(�)Tb

Calculate 6D Forces: Fb  [Nb,x + ⌧� Nb,y + ⌧✓ Nb,z + ⌧ fb,x fb,y fb,z]
T

Step 3: 6D Equations of Motion (EoM)
V̇b  I�1

b [Fb � İbVb]
Return V̇b

CD is the drag coe�cient. As shown in Fig. 3b, we have estimated both values
as CL = 1.6 and CD = 0.042 respectively. In this sense, the net vertical Thrust
(Tb) generated at the CM of the UAV can be calculated as:

Tb =
4X

oi=1

Toi (6)

As observed in Eq. 4, Tb governs the generation of the linear forces. The
expressions s , c denote sin( ) and cos( ) respectively. Finally, the term
m = 0.43Kg is the mass of the UAV and g = 9.81ms�2 is the gravitational
acceleration. In the forthcoming section, we will derive the control strategy to
regulate the angular motions precisely. Since our control approach will depend
on the UAV model, we introduce the computational steps to calculate the EoM
in Algorithm 1.

roll, pitch, yaw control

IMU:
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In Eq. 17, the integration of the error can be eliminated since the control law
in Eq. 16 already ensures zero steady-state error for e�. Replacing ė2 = e2�kpe�
in Eq. 16:

u� = Ixx[kp(e2 � kpe� � ki
R
e�) + �̈d + kie� � e2 + kpe�]

= Ixx[e�(kp � ki � k2p) + e2(kp � 1)� kpki
R
e�) + �̈d]

(18)

Equation 18 presents the control law to regulate �. This controller allows
zero steady-state error for roll via

R
e�, it is sensitive to small variations in roll

rate via e2, and it directly depends on the UAV model via the DAF term �̈d

(Algorithm 1). By following the same structure in Eq. 18, the control law to
regulate the pitch angular motion (✓) is:

u✓ = Iyy[e✓(kp,2 � ki,2 � k2p,2) + e2(kp,2 � 1)� kp,2ki,2
R
e✓) + ✓̈d] (19)
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Non-linear attitude control

Our UAV comes with an integrated PID-based autopilot. As detailed in Fig.1,
three closed-loop controllers are needed to regulate: (i) the X-Y position based
on GPS feedback, (ii) the Z altitude based on barometric pressure and laser
readings (pointing downwards), and (iii) the �, ✓, attitude based on IMU data.

For this application, our UAV is constantly subjected to large wind dis-
turbances that cause unsteady angular motions and therefore imprecise path
tracking. Also, aerial imagery captured across the crop is clearly a↵ected by the
aforementioned behaviour. To overcome this issue, we propose to replace both
roll and pitch PID-based controllers by a robust Nonlinear Backstepping Control
in order to obtain accurate path tracking by rejecting wind disturbances faster.

The classical backstepping method has several advantages. It can explicitly
take into account the nonlinearities of the UAV model defined in Eq. 2, and fore-
most, a virtual control law can be incorporated to specifically regulate angular
accelerations. In this regard, we have derived a Desired Acceleration Function
(DAF) for roll and pitch. This enhanced controller is called Backstepping+DAF.
Our goal is to use the dynamics EoM defined in Algorithm 1 within the control
law in order to overcome against abrupt angular acceleration changes, concretely
for roll and pitch. The DAF terms make the control law more energetic to reject
wind disturbances faster.

The backstepping control supports on the Lyapunov stability concept that
guarantee asymptotic stabilization around equilibrium points. For our applica-
tion, we require both roll � a pitch ✓ angles to remain in zero i.e. e� = �d��! 0
and e✓ = ✓d � ✓ ! 0. However, our control law has to be sensitive to small
changes in both angular motions, therefore, an error dynamics could be defined
as a function of the angular rates, as:

ė� = �̇d � !x,
ė✓ = ✓̇d � !y

(7)

In Eq. 7, both !x and !y are measured by the IMU sensor onboard the UAV.
The goal is to obtain a desired angular acceleration terms within the control law
to account for small angular rate changes. These terms are called DAF (Desired
Acceleration Function):

�̈d = f(�, �̇, Fb)
=

⇥
1 0 0 0 0 0

⇤
V̇b,

✓̈d = f(✓, ✓̇, Fb)
=

⇥
0 1 0 0 0 0

⇤
V̇b

(8)

Both DAF terms �̈d and ✓̈d are extracted from the spatial acceleration V̇b 2
<6x1 computed in Algorithm 1. To make explicit the DAF terms from Eq. 8
within the backstepping, in the following we focus on deriving the control law
for roll (u�).

From Eq. 6, we introduce a virtual control law that governs the error dynam-
ics, yielding a second tracking error e2 = !d

x � !x where �̇d ! !d
x. In this sense,
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In Eq. 17, the integration of the error can be eliminated since the control law
in Eq. 16 already ensures zero steady-state error for e�. Replacing ė2 = e2�kpe�
in Eq. 16:

u� = Ixx[kp(e2 � kpe� � ki
R
e�) + �̈d + kie� � e2 + kpe�]

= Ixx[e�(kp � ki � k2p) + e2(kp � 1)� kpki
R
e�) + �̈d]

(18)

Equation 18 presents the control law to regulate �. This controller allows
zero steady-state error for roll via

R
e�, it is sensitive to small variations in roll

rate via e2, and it directly depends on the UAV model via the DAF term �̈d

(Algorithm 1). By following the same structure in Eq. 18, the control law to
regulate the pitch angular motion (✓) is:

u✓ = Iyy[e✓(kp,2 � ki,2 � k2p,2) + e2(kp,2 � 1)� kp,2ki,2
R
e✓) + ✓̈d] (19)
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X-Y position control

Design parameters are ! z ,"z ,"5( ) > 0 , whose values are set in Table IV (subsection 4.3.6).

4.3.4. Backstepping Position Control

Position tracking errors for Px and Py are:

Control laws are then introduced in Eq. (4.36), being ! x ,! y ,"x ,"y ,"6 ,"7( ) > 0 .

4.3.5. Backstepping+FST Stability Analysis

Stability analysis of backstepping+FST is performed using Lyapunov theory. The following 
candidate Lyapunov function is chosen: 

Equation (4.37) includes the angular (roll in this case) tracking error e! , the angular rate error 

e2 =! x
d "! x ,  and the integration action of tracking error e! . Deriving Eq. (4.37) and using the 

following replacements: 
 
!e! = "#!e! " $! e!% + e2  and   !e2 = !e" ! #2e2 , yields:

From the definition of the candidate Lyapunov function in Eq. (4.37) and the fact that 

 
!V ! 0;" e# ,e2( ) guarantees the boundedness of e! , its integral e!" , and the rate error e2 . As 

consequence, the reference angular value ! d and the angular position !  are also bounded due to 

the Eq. (4.24), where e! = ! d "! . Global asymptotic stability is also ensured from the positive 

definition of V ,  in which  
 
!V e! ,e2( ) < 0;" e! ,e2( ) # 0 and  

!V 0( ) = 0  (LaSalle theorem).  

4.3.6. Backstepping+FST Simulation Results

Using Simulink, this section presents some initial testing of the Backstepping+FST for attitude 
control. As shown in Fig. 4.6, MAV dynamics, aerodynamics, and motor dynamics are also 

(4.35)
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(4.38)
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Replacing 
 
!e! = "#!e! " $! e!% + e2 into  !e2 in Eq. (4.27): 

In the case of the DraganFlyer quadrotor, extracting from Eq. (3.38) the dynamics terms 
corresponding to the roll acceleration term  

!!!  and replacing them into Eq. (4.29):

Solving Eq. (4.30) for !" = u" which is the control law for achieving roll stabilization being the 

desirable dynamics for the angular speed tracking error  !e2 = !e" ! #2e2 :

where !" ,#" ,#2( ) > 0 are the control parameters of the backstepping+FST method. Table IV (in 

subsection 4.3.6) will show the numerical values used for initial simulation testing. Finally, the 
desired angular acceleration term  

!!! d in Eq. (4.31) is replaced by the Frenet-Serret formulas showed 

in Eq. (4.23). Pitch and yaw control is derived by applying the same procedure. Control laws are:

Equations (4.31) and (4.32) show the Backstepping+FST methodology. The aim of addressing a 
new term within the single backstepping was to make the control effort more energetic in terms of 
angular response. This new term, called  

!!! d corresponds to a desired acceleration function that 

strictly depends on the velocity and acceleration of the vehicle. As already mentioned, the Frenet 
Serret formulas were used to obtain that function. The hypothesis of improving attitude control 
when the MAVs are maneuvering at -high- speeds with aggressive changes in orientation rates will 
confirm via simulation and experimental testing. For instance, next subsections will show classic 
backstepping approach applied for altitude and position control.     

4.3.3. Backstepping Altitude Control

Using the same procedure showed in the previous subsection, altitude tracking error and its 
dynamics are:

The control law is then defined as:

(4.29)
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Attitude loop

Position loop DGPS: Lat-Long (X,Y)

Z altitude control

Replacing 
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Design parameters are ! z ,"z ,"5( ) > 0 , whose values are set in Table IV (subsection 4.3.6).

4.3.4. Backstepping Position Control

Position tracking errors for Px and Py are:

Control laws are then introduced in Eq. (4.36), being ! x ,! y ,"x ,"y ,"6 ,"7( ) > 0 .

4.3.5. Backstepping+FST Stability Analysis

Stability analysis of backstepping+FST is performed using Lyapunov theory. The following 
candidate Lyapunov function is chosen: 
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Design parameters are ! z ,"z ,"5( ) > 0 , whose values are set in Table IV (subsection 4.3.6).

4.3.4. Backstepping Position Control

Position tracking errors for Px and Py are:

Control laws are then introduced in Eq. (4.36), being ! x ,! y ,"x ,"y ,"6 ,"7( ) > 0 .

4.3.5. Backstepping+FST Stability Analysis

Stability analysis of backstepping+FST is performed using Lyapunov theory. The following 
candidate Lyapunov function is chosen: 

Equation (4.37) includes the angular (roll in this case) tracking error e! , the angular rate error 

e2 =! x
d "! x ,  and the integration action of tracking error e! . Deriving Eq. (4.37) and using the 
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From the definition of the candidate Lyapunov function in Eq. (4.37) and the fact that 
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consequence, the reference angular value ! d and the angular position !  are also bounded due to 
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d "! . Global asymptotic stability is also ensured from the positive 
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4.3.6. Backstepping+FST Simulation Results

Using Simulink, this section presents some initial testing of the Backstepping+FST for attitude 
control. As shown in Fig. 4.6, MAV dynamics, aerodynamics, and motor dynamics are also 
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1. Dinámica del Error:

Title Suppressed Due to Excessive Length 9

roll and pitch. The DAF terms make the control law more energetic to reject
wind disturbances faster.

In previous work we successfully developed and validated this novel controller
under di↵erent scenarios: in [3] we achieved the steady flight of a drone operat-
ing at high speed for covering large crop fields within a multi-UAV cooperative
scheme. In [4] we used this controller to regulate the attitude of a novel bio-
inspired bat-like micro aerial vehicle with highly articulated wings by including
wing-inertia information within the control law. In [2], we presented this con-
trol technique for low-altitude drone operation by considering the ground e↵ect.
Herein, we propose to use the DAF terms to reject external wind disturbances
faster.

The backstepping control supports on the Lyapunov stability concept that
guarantee asymptotic stabilization around the equilibrium points. For our ap-
plication, we require both roll � a pitch ✓ angles to remain in zero while the
UAV is hovering above the crop for capturing NIR images, i.e. e� = �d � � ! 0
and e✓ = ✓d � ✓ ! 0. Otherwise, the set-point references for both roll and pitch
controllers are defined by the X-Y position controller. Furthermore, our control
law has to be sensitive to small changes in both angular motions, therefore, an
error dynamics could be defined as a function of the angular rates, as:

ė� = �̇d � !x,
ė✓ = ✓̇d � !y

(7)

In Eq. 7, both !x and !y are measured by the IMU sensor onboard the UAV.
The goal is to obtain a desired angular acceleration terms within the control law
to account for small angular rate changes. These terms are called DAF (Desired
Acceleration Function):

�̈d = f(�, �̇, Fb)
=

⇥
1 0 0 0 0 0

⇤
V̇b,

✓̈d = f(✓, ✓̇, Fb)
=

⇥
0 1 0 0 0 0

⇤
V̇b

(8)

Both DAF terms �̈d and ✓̈d are extracted from the spatial acceleration V̇b 2
<6x1 computed in Algorithm 1. To make explicit the DAF terms from Eq. 8
within the backstepping, in the following we focus on deriving the control law
for roll (u�).

From Eq. 6, we introduce a virtual control law that governs the error dynam-
ics, yielding a second tracking error e2 = !d

x � !x where �̇d ! !d
x. In this sense,

a proportional-derivative-integral structure is defined for the virtual control law
!d
x, as:

!d
x = kpe� + �̇d + ki

R
e�(t)dt , (9)

where Kp and Ki must be positive constants, since the BS requires a positive

definite Lyapunov function (L) for stabilizing the tracking error: L (e�) =
e2�
2
.

Now, replacing Eq. 9 into the virtual control error e2 yields:
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PID para la ley virtual:

4. (3) en (2):

10 F. Author et al.

e2 = !d
x � !x = kpe� + �̇d + ki

R
e�(t)dt� !x (10)

By following the same approach from Eq. 7, the error dynamics for ė2 is
determined as:

ė2 = kpė� + �̈d + kie� � !̇x (11)

In Eq. 11, we have derived �̈d corresponding to the DAF term for roll (see
Eq. 8). In this regard, the computation of Algorithm 1 is required to close the
attitude loop. Now, the control action u� is determined as:

u� ! ⌧� = Ixx�̈,
�̈ ! !̇x = I�1

xx ⌧�
(12)

Replacing !̇x from Eq. 12 in 11 and isolating the control action, yields:

u� = Ixx[kpė� + �̈d + kie� � ė2] (13)

Since the calculation of ė� and ė2 for the real system would introduce accu-
mulative numerical errors, we need to rewrite the control law to be dependent
of the tracking errors: e� and e2. By isolating !x = !d

x � e2 from Eq. 10 and
replacing it into Eq. 7:

ė� = �̇d � (!d
x � e2) (14)

Replacing Eq. 14 into 13:

u� = Ixx[kp(�̇d � !d
x + e2) + �̈d + kie� � ė2], (15)

and replacing !d
x from Eq. 9:

u� = Ixx[kp(�̇d � (kpe� + �̇d + ki
R
e�) + e2) + �̈d + kie� � ė2]

= Ixx[kp(e2 � kpe� � ki
R
e�) + �̈d + kie� � ė2]

(16)

Finally, the expression for ė2 can be rewrite to follow the same form of ė� in
Eq. 14. Likewise, !d

x is also replaced by Eq. 9:

ė2 = �̇d � !d
x + e2

= �̇d � (kpe� + �̇d + ki
R
e�) + e2

= e2 � kpe� �⇠⇠⇠⇠: 0

ki
R
e�

(17)

In Eq. 17, the integration of the error can be eliminated since the control law
in Eq. 16 already ensures zero steady-state error for e�. Replacing ė2 = e2�kpe�
in Eq. 16:

u� = Ixx[kp(e2 � kpe� � ki
R
e�) + �̈d + kie� � e2 + kpe�]

= Ixx[e�(kp � ki � k2p) + e2(kp � 1)� kpki
R
e� + �̈d]

(18)

Equation 18 presents the control law to regulate �. This controller allows
zero steady-state error for roll via

R
e�, it is sensitive to small variations in roll
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and replacing !d
x from Eq. 9:

u� = Ixx[kp(�̇d � (kpe� + �̇d + ki
R
e�) + e2) + �̈d + kie� � ė2]
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ė2 = kpė� + �̈d + kie� � !̇x (11)

In Eq. 11, we have derived �̈d corresponding to the DAF term for roll (see
Eq. 8). In this regard, the computation of Algorithm 1 is required to close the
attitude loop. Now, the control action u� is determined as:

u� ! ⌧� = Ixx�̈,
�̈ ! !̇x = I�1

xx ⌧�
(12)

Replacing !̇x from Eq. 12 in 11 and isolating the control action, yields:
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(16)
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ė� = �̇d � (!d
x � e2) (14)

Replacing Eq. 14 into 13:

u� = Ixx[kp(�̇d � !d
x + e2) + �̈d + kie� � ė2], (15)
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ė2 = �̇d � !d
x + e2

= �̇d � (kpe� + �̇d + ki
R
e�) + e2

= e2 � kpe� �⇠⇠⇠⇠: 0

ki
R
e�

(17)

In Eq. 17, the integration of the error can be eliminated since the control law
in Eq. 16 already ensures zero steady-state error for e�. Replacing ė2 = e2�kpe�
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Fig. 5. (Simulation) Closed-loop trajectory tracking comparison between the proposed
BS-DAF (blue lines) and the classical PID control (green lines): (a) 3D navigation re-
sults. Wind disturbances were added at five instances during the trajectory (black ar-
rows). The blue dots indicate the UAV must stop to capture NIR data. (b) Trapezoidal
velocity profile for the desired path. (c) Position errors. (d) Roll and pitch profiles.

BS+DAF control does not drive the altitude loop. Upcoming work could be ori-
ented towards the regulation of thrust under the Backstepping+DAF approach.
Finally, for the rest of the trajectory, the simulation demonstrates that the back-
stepping+DAF is accurate and reliable to reject external wind disturbances.

We also conducted several experimental trials to show how the proposed
controller operates in real windy conditions. Figure 6 shows the experimental
results. In plot (a), the fluctuations observed in some points during the trajectory
were caused by wind disturbances. The wind speed was measured at the ground-
level ranging from 1.8 up to 5.4ms�1). It is important to highlight that the UAV
was flying at a constant altitude of 20m over the rice crop.

When the UAV is out of trajectory, the position controller sends commands
to the attitude loop in order to correct the tracking error. In this regard, the plot
(b) shows how fast an accurate is the response of the Backstepping+DAF for
rejecting the disturbances. Under this scenario, our system obtained a maximum
tracking error of 2% (plot d). In general, the UAV was able to positioned in the
hovering knot-points accurately (blue dots in plot a), maintaining a minimum
error with the GPS waypoints. Once the UAV reached the end-point mission,
it returned to the home-point at a maximum flying velocity of 8.5m/s. Large
values for roll and pitch (plot b) at the end of the mission correspond to the
returning-home maneuver.
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Fig. 6. (Experimental) autonomous navigation results: (a)X-Y trajectory followed by
the UAV (altitude set-point of 20m over the crop). The red stars correspond to GPS
waypoints that define the desired path. The insets show stills of the UAV while per-
forming the crop coverage mission. (b) pitch and roll angles driven by the proposed
Backstepping+DAF controller. The pitch set-point was defined in ✓d = �2.5deg to
drive the UAV forward at a constant velocity of 1.5ms�1 (unless the UAV reaches a
hovering point, where ✓d = 0). Negative values of pitch enable forward motion accord-
ing to the body frame of reference (see Fig. 3a). (c) Altitude profile during the mission
and (d)X-Y tracking error.

4 AI-based NIR image Processing

4.1 GrabCut Segmentation

4.2 Guided Filter Refinement

4.3 Segmentation Results

To test the quality of the proposed method, we compared the binary mask seg-
mentation against other 3 well-known methods such as k-means, manual HSV
threshold, and mean-shift,

4.4 VI Feature Extraction for N dynamics

Vegetation indices are widely used to quantify both plant and soil variables by
associating certain spectral reflectances that are highly related to variations in
canopy chemical components such as nitrogen. At canopy-level, several factors
a↵ect the spectral reflectances of the crop: solar radiation, plant morphology and
color, leaf angles, undergrowth and soil characteristics (water).

In our system, the parrot sequoia camera has solar radiation sensor that
compensates the light variations in the canopy. Also, the proposed segmentation
method allows the filtering of undergrowth and other soil noises. In this sense,
the change in the rice canopy color is perhaps the most notably variation during
the phenological cycle. In the vegetative stage, the green color is predominant
whereas in the reproductive stage, panicle formation starts and thus yellow fea-
tures appear in the images. In ripening, the maturation of the plants occur while

Simulación: Experimentales:



Control	de	vuelo	de	alta	precisión

OMICAS-P4: FENOTIPIFICACIÓN MULTIESCALA DE ALTA RESOLUCIÓN  
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Fig. 1. UAV-based Robotic System for canopy nitrogen estimation in rice crops.

based segmentation algorithm called GrabCut. This method solves an op-
timization problem using an energy function that enables to properly label
texture and color information by means of a Gaussian mixture model. Af-
ter applying GrabCut, the resultant NIR image includes only relevant pixel
information that accurately represents the canopy from where the VIs are
calculated for the estimation of N.

– (iii) UAV precise stabilization control. During flight, the UAV captures mul-
tispectral imagery with relevant metadata. This data is used for training the
machine learning algorithms that learn about the crop behaviour to finally
estimate the amount of nitrogen contained in vegetation canopies. In this
regard, the geo-referenced above-ground data captured by the UAV must
correlate with the data measured at ground-level. In this work, we present
a novel UAV attitude control called Backstepping+DAF with the aim of
maintaining precise angular stabilization during flight.

Figure 1 details the proposed approach. Our UAV is a small quadrotor called
the AscTec Hummingbird (manufactured by Intel’s Ascending Technologies6).
This UAV comes with a C++ SDK that enables onboard code development with
ease. A high-level Atom Intel processor (HLP) o↵ers enough computing power
to run solutions in real-time, whereas a low-level processor (LLP) handles the
sensor data fusion and rotor control with an update rate of 1kHz. As shown in
Fig. 1, we developed a closed-loop attitude controller to drive the low-level rotor’s
control running in the LLP. This control method depends on the dynamics of
the UAV to properly reject wind-disturbances and keep the UAV steady. During
flight, a dataset of NIR imagery is precisely collected aiming at the above-ground
estimation of nitrogen by using machine learning methods.

2 Rice Crops

The crops were designed with 3 spatial repetitions containing 8 contrasting
rice genotypes to nitrogen dynamics, biomass accumulation and flowering cycle:

6 http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-hummingbird/

UAV + Machine Learning para estimación de variables de cultivo: biomasa, Nitrógeno, 
Estrés hídrico y Fósforo



UAV	para	fenotipificación

Setup4 F. Author et al.

Parrot 
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Groundtruth for 
Machine Learning

2.1m
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0.3m
(a)

(b) (c)

Edges

Vegetative Reproductive Ripening

week 1 week 8 week 12 Time

Fig. 2. Crop field: (a)-(b) each plot was designed with an area of 5.7m2 and a rice crop
density of 38.4kgha�1. The UAV is programmed to capture NIR imagery from the
plots of interests by using a Sequoia camera manufactured by Parrot. (c) The results
reported in this work were obtained during three stages of rice growth: vegetative,
reproductive and ripening with an entire phenological cycle ranging between 86-101
days.

FED50, MG2, ELWEE, NORUNKAN, IR64, AZUCENA, UPLRI7, and LINE
23. These rice varieties have a phenological cycle ranging between 86-101 days.

Figure 2 details some characteristics of the crop. As shown in plots (a)-(b),
the length of a plot was about 2.75m with a distance between plants of 25cm and
30cm between rows. Within each plot, we defined 6 sampled areas with 1 linear
meter in length (containing four plants). A Ground-Truth was defined based on
the direct measurements of nitrogen using the SPAD meter over these sampled
areas. In this regard, measurements from the crop were obtained during three
stages of rice growth: vegetative, reproductive and ripening. Overall, 24 plots
were measured per stage. An example of the Ground-Truth is shown in Table 1.

Our UAV was equipped with the Parrot Sequoia multispectral sensor7 fab-
ricated with 4 separate bands: green, red, red-edge and near-infrared. Also, a
sunshine sensor (solar radiation) allows the camera to automatically regulate the
amount of light to absorb based on weather conditions and canopy reflections.
Additional sensors such as an IMU, magnetometer and GPS are also embedded
within the sunshine sensor. Figure 2a details the camera setup.

7 https://www.parrot.com/business-solutions-us/parrot-professional/parrot-sequoia
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Table 1. An example of a Ground-Truth
dataset. The crop field was designed with
three spatial repetitions (Rep) containing 8
contrasting rice genotypes.

Plot Genotype Rep Biomass (g) SPAD

1 AZUCENA 1 1472.76 56.55

2 ELWEE 1 1949.84 47.80

3 LÍNEA 23 1 1032.36 54.55

4 UPLRI7 1 1597.05 46.32

5 NORUNKAN 1 1682.75 43.30

6 IR64 1 1723.10 32.91

7 FED50 1 1832.02 47.06

8 MG2 1 1641.10 43.36

9 AZUCENA 2 1281.67 49.26

10 IR64 2 1577.04 42.59

11 LÍNEA 23 2 875.57 49.82

12 UPLRI7 2 1567.63 48.15

13 ELWEE 2 1917.16 41.29

14 FED50 2 1888.46 46.29

15 NORUNKAN 2 1945.11 42.82

16 MG2 2 2120.31 38.96

17 FED50 3 1640.32 49.20

18 UPLRI7 3 1590.09 40.88

19 IR64 3 1760.36 40.23

20 AZUCENA 3 1435.09 55.81

21 NORUNKAN 3 1528.36 43.96

22 ELWEE 3 2314.02 49.70

23 LÍNEA 23 3 770.55 46.45

24 MG2 3 2032.56 42.67

!Measured SPAD value
24 26 28 30 32 34 36 38 40 42
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Table 2. Correlation between SPAD read-
ings and leaf N concentration [8].

3 UAV stabilization control

This section presents the modeling and control methods proposed herein. Firstly,
Equations of Motion (EoM) that describe both inertial and aerodynamics e↵ects
are introduced. We propose to derive a six-dimensional operator describing the
spatial accelerations of the body frame as a function of the UAV inertias, mo-
ments and aerodynamics. Secondly, we introduce a nonlinear MPC-based con-
troller to regulate the stabilization of the UAV, specifically both pitch ✓ and roll
� angles.

Equations of Motion

Our UAV is a Vertical Takeo↵ and Landing (VTOL) four-rotor drone. As shown
in Fig. 3a, the body frame {b} is a six degree of freedom rigid body. Rotations
about the body-frame axes are designated by the Euler angles: roll (�), pitch (✓)
and yaw ( ) following standard aerodynamic conventions. In this sense, the 6D
spatial acceleration V̇b 2 <6x1 of the body frame can be written as:
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Segmentación - GrabCut
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As shown in Figure 8, the input image p is the mask attained by the GrabCut
algorithm in the previous section shown in 8a, the guidance image is the original
image in RGB or gray-scale at 8b, the result in gray-scale is shown in image 8c.

(a) ↵ image from GrabCut using the com-
plete algorithm 2

(b) Original RGB image used as Guidance

(c) Refinement of image (a) using the guidance (b), r = 60 and ✏ = 0.0012

Fig. 8: Cropped and zoomed sections of the same place of the rice-plot, to show
the results of the refinement using the GF

The parameters for the radius and ✏, depends of the image size and apparent
size of the objects, in our experimental test, the best mean results were attained
with r = 60 and ✏ = 0.0012,

4.3 Segmentation Results

To test the quality of the proposed method, we compared the binary mask seg-
mentation against other three well-known methods; k-means, mean-shift, and
manual threshold over the HSV color representation.

The acronyms used in the comparison results are listed in table 3, for the
mean-shift algorithm we use 4 di↵erent bandwidths BW = 2, 4, 8, 16 the k-means
algorithm run with the default parameters for two clusters and 255 gray levels.
there are two manual algorithms: The HSV threshold for which 6 thresholds
were selected, 2 per channel, to define the respective maximum and minimum

18 F. Author et al.
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Name Equation

Normalized Di↵erence Vege-

tation Index [32]

NDVI =
⇢780�⇢670
⇢780+⇢670

Green Normalized Di↵erence

Vegetation Index [33]

GNDVI =
⇢780�⇢500
⇢780+⇢500

Simple Ratio [32] SR =
⇢780
⇢670

Soil-Adjusted Vegetation In-

dex [33][34]

SAVI = (1 + L)

⇣
⇢800�⇢670

⇢800+⇢670+L

⌘
with L = 0.5

Modified SAVI [34] MSAVI =
1
2

⇣
2⇢800 + 1 �

p
(2⇢800 + 1)2 � 8(⇢800 � ⇢670)

⌘

Triangular Vegetation Index

[33]

TVI =
1
2

⇣
120(⇢780 � ⇢500) � 200(⇢670 � ⇢500)

⌘

Corrected Transformed Veg-

etation Index [35]

CTVI =
NDVI+0.5
|NDVI+0.5|

p
|NDVI + 0.5|

Table 5: Selected Near Infrared Vegetation Indices (extracted features). The ⇢f

term denotes the reflectance of the for the frequency f).

GNDVI
NDVI
SR

MSAVI

SR NDVI

GNDVI MSAVI

(a) (b)

Fig. 10: (a) VIs variance during crop growth from the vegetative stage until ripen-
ing (phenological cycle between 86-101 days). Four of the most representative
VIs for N estimations were selected for this test. (b) An example of applying the
corresponding VI formulas from Table 5 to the aerial NIR images (vegetative
stage).

trained with a set of images accounting for the 60% of the entire database (us-
ing the Ground-Truth). For the final estimations of leaf nitrogen, we used the
remaining 40% of the database (testing phase of the AI methods).

As previously mentioned in Section 2, eight rice varieties were evaluated at
several times during the phenological cycle (ranging between 86-101 days each).
In the following, we present a comprehensive comparison among multi-variable
linear regressions (MLR), support vector machines (SVM) and artificial neural
networks (NN) for the estimation of the N dynamics. All these models were
trained using the Ground-truth (cf. Table 1) containing the direct measurements
of leaf nitrogen based on SPAD readings. In this regard, the estimation results
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corresponding VI formulas from Table 5 to the aerial NIR images (vegetative
stage).

trained with a set of images accounting for the 60% of the entire database (us-
ing the Ground-Truth). For the final estimations of leaf nitrogen, we used the
remaining 40% of the database (testing phase of the AI methods).

As previously mentioned in Section 2, eight rice varieties were evaluated at
several times during the phenological cycle (ranging between 86-101 days each).
In the following, we present a comprehensive comparison among multi-variable
linear regressions (MLR), support vector machines (SVM) and artificial neural
networks (NN) for the estimation of the N dynamics. All these models were
trained using the Ground-truth (cf. Table 1) containing the direct measurements
of leaf nitrogen based on SPAD readings. In this regard, the estimation results
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Información multi-espectral:
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Resultados. Estimación N:
36,850 imágenes, 8 genotipos, 6 meses, 3 repeticiones

Title Suppressed Due to Excessive Length 25

NN Training function Crop Stage Correlation RMSE R2

Vegetative 0.979 1.986 0.959

Bayesian regression Reproductive 0.921 3.779 0.848

Ripening 0.67 4.405 0.462

Vegetative 0.985 1.687 0.971

BFGS Quasi-Newton Reproductive 0.938 3.203 0.880

Ripening 0.851 2.149 0.724

Vegetative 0.983 1.855 0.966

Levenberg-Marquardt Reproductive 0.9442 3.007 0.891

Ripening 0.890 1.835 0.792

Vegetative 0.952 2.952 0.907

Scaled Conjugate Gradient Reproductive 0.925 3.446 0.856

Ripening 0.862 2.115 0.742

Table 8: Numerical data obtained from the 5-layer NN with several Training
functions.
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Fig. 14: Overall N estimation results. (a)-(c) show average data for the estimated
N dynamics from vegetative to ripening stages (between 86-101 days of pheno-
logical cycle). We compared the results obtained from MLR (linear Regressions),
SVM (Support vector Machines) and NN (Neural Networks). (d) ROC curve ob-
tained for the three AI methods evaluated: ACC=0.82 for MLR, ACC=0.78 for
SVM and ACC=0.85 for NN. (e) Histogram of N correlations during crop growth
from the initial vegetative stage until ripening. Table 9 reports the numerical
data.
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that supported the experiments over the crops located at CIAT headquarters in
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Fig. 14: Overall N estimation results. (a)-(c) show average data for the estimated
N dynamics from vegetative to ripening stages (between 86-101 days of pheno-
logical cycle). We compared the results obtained from MLR (linear Regressions),
SVM (Support vector Machines) and NN (Neural Networks). (d) ROC curve ob-
tained for the three AI methods evaluated: ACC=0.82 for MLR, ACC=0.78 for
SVM and ACC=0.85 for NN. (e) Histogram of N correlations during crop growth
from the initial vegetative stage until ripening. Table 9 reports the numerical
data.
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Fig. 14: Overall N estimation results. (a)-(c) show average data for the estimated
N dynamics from vegetative to ripening stages (between 86-101 days of pheno-
logical cycle). We compared the results obtained from MLR (linear Regressions),
SVM (Support vector Machines) and NN (Neural Networks). (d) ROC curve ob-
tained for the three AI methods evaluated: ACC=0.82 for MLR, ACC=0.78 for
SVM and ACC=0.85 for NN. (e) Histogram of N correlations during crop growth
from the initial vegetative stage until ripening. Table 9 reports the numerical
data.
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Method Average N estimations Average N measurements Correlation

V R Ri V R Ri V R Ri

MLR 36.923 30.766 42.669 0.935 0.890 0.82

SVM 35.7472 29.2902 42.5226 35.7906 29.6338 42.4207 0.9699 0.9467 0.8770

NN 36.173 30.495 43.2648 0.986 0.9442 0.890

Table 9: Overall numerical results for AI-based N estimations.

Palmira, Valle del Cauca, Colombia; in particular to Yolima Ospina and Cecile
Grenier for their support in upland and lowland trials.
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