

Modelado y Control de Drones autónomos para monitoreo agrícola por medio de imágenes aéreas

- 1. OMICAS: Fenotipificación
- 2. UAVs en Agricultura de Precisión
- 3. Control de vuelo de alta precisión
- 4. UAV para Fenotipificación

Julian Colorado PhD in Robotics – UAV Control Profesor Javeriana Bogotá

OMICAS: Fenotipificación

OMICAS: Fenotipificación

i curso

OMICAS: Fenotipificación

LATAFORMAS EN DESARROLLO

(a) Upland vegetative stage (b) Upland reproductive (c) Upland ripening stage - no panicles, only leaves are stage - the reproductive observed. stage ends with the flower-

- Crecimiento exponencial en la última década
- UAVs comerciales cada vez más económicos (~1500 USD)
- Integran cámaras, LiDAR y alto poder de cómputo
- Aún hay restricciones de la capacidad de carga (~1Kg para los UAVs de bajo costo)
- Límites en autonomía de vuelo (~20min según carga)
- Autopilotos cada vez mejores, pero con falencias en precisión y control de altura.

Riego de pesticidas o hídrico Modelos 3D de cultivos

Fenómica

Modelos hiperespectrales

Smart-Farming

Parrot bluegrass system Sequoia NIR camera

Satellites

Por qué necesitamos un autopiloto robusto?

Modelo Dinámico 6D

Fenómica

FollSim is a simulation. It is not reality

Aceleración 6D en CM:

 $\begin{bmatrix} \ddot{\phi} \\ \ddot{\theta} \\ \ddot{\psi} \\ \ddot{x}_b \\ \ddot{y}_b \\ \ddot{z}_b \end{bmatrix} \longrightarrow \vec{V}_b = I_b^{-1} [F_b - \dot{I}_b V_b]$ $\begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} \\ 0 \end{bmatrix}$

Matriz de Inercia 6D: $I_b = \begin{bmatrix} J_b & 0 \\ 0 & mU \end{bmatrix} = \begin{bmatrix} I_{xx} & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

$$= \begin{bmatrix} I_{xx} & 0 & 0 & 0 & 0 & 0 \\ 0 & I_{yy} & 0 & 0 & 0 & 0 \\ 0 & 0 & I_{zz} & 0 & 0 & 0 \\ 0 & 0 & 0 & m & 0 & 0 \\ 0 & 0 & 0 & 0 & m & 0 \\ 0 & 0 & 0 & 0 & 0 & m \end{bmatrix}$$

Fuerza 6D:

El futuro

es de todos

Gobierno de Colombia

 $\dot{V}_b = \begin{bmatrix} \dot{\omega}_b \\ \dot{v}_b \end{bmatrix} =$

$$\begin{bmatrix} N_b \\ f_b \end{bmatrix} = \begin{bmatrix} (N_{b,x}) + (\tau_{\phi}) \\ (N_{b,y}) + (\tau_{\theta}) \\ (N_{b,z}) + (\tau_{\psi}) \\ f_{b,x} \\ f_{b,y} \\ f_{b,z} \end{bmatrix} = \begin{bmatrix} (\dot{\theta}\dot{\psi} [I_{yy} - I_{zz}]) + s_{oi,b}\hat{j}(T_4 - T_3) \\ (\dot{\phi}\dot{\psi} [I_{zz} - I_{xx}]) + s_{oi,b}\hat{i}(T_1 - T_2) \\ (\dot{\theta}\dot{\phi} [I_{xx} - I_{yy}]) + (T_3 + T_4 - T_1 - T_2) \\ (s\psi s\phi + c\psi s\theta c\phi) T_b \\ (-c\psi s\phi + s\psi s\theta c\phi) T_b \\ mg - (c\psi c\phi) T_b \end{bmatrix}$$

COLOMBIA

Modelo Aerodinámico 6D

Sistemas de coordenadas

FoilSim III simulator (NASA) – Blade Element Theory

$$F_{b} = \begin{bmatrix} N_{b} \\ f_{b} \end{bmatrix} = \begin{bmatrix} (N_{b,x}) + (\tau_{\phi}) \\ (N_{b,y}) + (\tau_{\theta}) \\ (N_{b,z}) + (\tau_{\psi}) \\ f_{b,x} \\ f_{b,y} \\ f_{b,z} \end{bmatrix} = \begin{bmatrix} (\dot{\theta}\dot{\psi} [I_{yy} - I_{zz}]) + s_{oi,b}\hat{j}(T_{4} - T_{3}) \\ (\dot{\phi}\dot{\psi} [I_{zz} - I_{xx}]) + s_{oi,b}\hat{i}(T_{1} - T_{2}) \\ (\dot{\theta}\dot{\phi} [I_{xx} - I_{yy}]) + (T_{3} + T_{4} - T_{1} - T_{2}) \\ (s\psi s\phi + c\psi s\theta c\phi) T_{b} \\ (-c\psi s\phi + s\psi s\theta c\phi) T_{b} \\ mg - (c\psi c\phi)T_{b} \end{bmatrix}$$

Empuje vertical (rotor):

$$T_{oi} = L + D$$

= $\frac{1}{2}\rho_{air}\omega_{oi}^2 A_{prop} \left(C_L + C_D\right)$

• Empuje en el CM: $T_b = \sum_{oi=1}^{4} T_{oi}$

 $(\alpha 2 2) > 0$

 $(\alpha_{-},\lambda_{-},\lambda_{5})>0$

Control de vuelo de alta precisión

■ El efecto viento, $\overline{se^{\alpha}}$ modela como ur. τ vector (magnitud ≠ velocidad viento, dirección= rotor) ϵ_2 que afecta el empuje de cada rotor. ϕ^{ϕ}

 $V \quad V \qquad \dot{V} \left(\dot{\mathcal{U}}_{\phi}(e_{\phi}, e_{2}) \right) \ll 0; \forall (e_{\phi}, e_{2}) \neq 0 \qquad \dot{V} \left(0 \right) \neq 0$

Algorithm 1 EoM Computation Step 1: Aerodynamic forces Read the rotors speed from encoders: ω_{oi} , $\forall oi : 1...4$ Calculate both lift and drag forces acting on each propeller: $L \leftarrow \frac{1}{2} C_L \rho_{air} \omega_{oi}^2 A_{prop},$ $D \leftarrow \frac{1}{2} C_D \rho_{air} \omega_{oi}^2 A_{prop}$ Calculate the Thrust produced by each rotor: $T_{oi} = L + D \,\forall oi : 1...4$ Calculate net Thrust produced at CM: $T_b = \sum T_{oi}$ Rotational forces (rolling, pitching and yawing) torques onto the body frame: $\tau_{\phi} \leftarrow s_{oi,cm} \hat{j} \left(T_4 - T_3 \right)$ $\tau_{\theta} \leftarrow s_{oi,cm} \hat{i} (T_1 - T_2)$ $\tau_{\psi} \leftarrow \tau_3 + \tau_4 - \tau_1 - \tau_2$ Linear forces acting onto the body frame: $f_{b,x} \leftarrow (s\psi s\phi + c\psi s\theta c\phi) T_b$ $f_{b,y} \leftarrow (-c\psi s\phi + s\psi s\theta c\phi) T_b$ $f_{b,z} \leftarrow (-c\psi c\phi)T_b$ 6D Aerodynamic Forces: $[\tau_{\phi} \ \tau_{\theta} \ \tau_{\psi} \ f_{b,x} \ f_{b,y} \ f_{b,z}]^T$ Step 2: Inertial forces Calculate 6D inertial operator: $I_b = \begin{bmatrix} J_b & 0 \\ 0 & mU \end{bmatrix}$ Calculate inertial terms: $N_{b,x} \leftarrow \dot{\theta} \dot{\psi} \left[I_{uu} - I_{zz} \right]$ $N_{b,y} \leftarrow \phi \psi \left[I_{zz} - I_{xx} \right]$ $N_{b,z} \leftarrow \theta \phi \left[I_{xx} - I_{yy} \right]$ $f_{b,z} \leftarrow mg - cos(\psi)cos(\phi)T_b$ Calculate 6D Forces: $F_b \leftarrow [N_{b,x} + \tau_{\phi} \ N_{b,y} + \tau_{\theta} \ N_{b,z} + \tau_{\psi} \ f_{b,x} \ f_{b,y} \ f_{b,z}]^T$ Step 3: 6D Equations of Motion (EoM) $\dot{V}_b \leftarrow I_b^{-1}[F_b - \dot{I}_b V_b]$ Return V_b

 $u_{\theta} = J_{\gamma} [e_{\theta}(1 + \alpha_{\theta}^2 - \lambda_{\theta}) + e_{\lambda}(-\alpha_{\theta} - \lambda_{\lambda}) + \alpha_{\theta}\lambda_{\theta}]e_{\theta} = U_{\beta} = U_{\beta} [\psi(J_{\gamma} - J_{\gamma})]$ $u_{w} = J_{\gamma} [e_{w}(1 + \alpha_{w}^2 - \lambda_{w}) + e_{\lambda}(-\alpha_{w} - \lambda_{\lambda}) + \alpha_{w}\lambda_{w}[e_{w} - \overline{\psi}^{d}] + \phi\dot{\theta}(J_{\gamma} - J_{\gamma})]$

Control de vuelo de alta precisión

5. Dinámica del error para la ley virtual:

$$\dot{e}_{2} = k_{p}\dot{e}_{\phi} + \ddot{\phi}^{d} + k_{i}e_{\phi} - \dot{\omega}_{x}$$

donde: $\ddot{\phi} \rightarrow \dot{\omega}_{x} = I_{xx}^{-1}\tau_{\phi}$ — Acción de control!

6. Reemplazando en (5), siendo
$$u_{\phi} \rightarrow \tau_{\phi}$$

$$u_{\phi} = I_{xx} [k_p \dot{e}_{\phi} + \ddot{\phi}^d + k_i e_{\phi} - \dot{e}_2]$$

Sin embargo, las derivadas de $\dot{e_{\phi}}$ $y\dot{e_{2}}$ introducen errores numéricos acumulativos. Por tanto,

$$\dot{e}_{\phi} = \dot{\phi}^d - k_p e_{\phi}$$
$$\dot{e}_2 = e_2 - k_p e_{\phi}$$

Gobierno de Colombi

Finalmente,

El futuro

es de todos

$$u_{\phi} = I_{xx} [e_{\phi}(k_p - k_i - k_p^2) + e_2(k_p - 1) - k_p k_i \int e_{\phi} + \tilde{\phi}^d]$$

Simulación:

Experimentales:

Mission ends

70

80

Control de vuelo de receptione la proure cisión

Soil Plane

Pixel coordinates

Robotics Toolbox

Fenómica

9m/s wind a

UAV para fenotipificación

UAV + Machine Learning para estimación de variables de cultivo: <u>biomasa, Nitrógeno,</u> <u>Estrés hídrico y Fósforo</u>

Ground-Iruin

UAV para fenotipificación

Setup

Plot	Genotype	\mathbf{Rep}	Biomass (g)	SPAD
1	AZUCENA	1	1472.76	56.55
2	ELWEE	1	1949.84	47.80
3	LÍNEA 23	1	1032.36	54.55
4	UPLRI7	1	1597.05	46.32
5	NORUNKAN	1	1682.75	43.30
3	IR64	1	1723.10	32.91
7	FED50	1	1832.02	47.06
8	MG2	1	1641.10	43.36
9	AZUCENA	2	1281.67	49.26
10	IR64	2	1577.04	42.59
11	LÍNEA 23	2	875.57	49.82
12	UPLRI7	2	1567.63	48.15
13	ELWEE	2	1917.16	41.29
14	FED50	2	1888.46	46.29
15	NORUNKAN	2	1945.11	42.82
16	MG2	2	2120.31	38.96
17	FED50	3	1640.32	49.20
18	UPLRI7	3	1590.09	40.88
19	IR64	3	1760.36	40.23
20	AZUCENA	3	1435.09	55.81
21	NORUNKAN	3	1528.36	43.96
22	ELWEE	3	2314.02	49.70
23	LÍNEA 23	3	770.55	46.45
24	MG2	3	2032.56	42.67

Table 2. Correlation between SPAD read-ings and leaf N concentration [8].

Extracción de características - VIS

UAV para fenotipificación

Datos promedio:

MLR

60 🗔

ſ	Method	Average N estimations			Average N measurements			Correlation		
		V	R	Ri	V	R	Ri	V	R	Ri
Ī	MLR	36.923	30.766	42.669				0.935	0.890	0.82
	SVM	35.7472	29.2902	42.5226	35.7906	29.6338	42.4207	0.9699	0.9467	0.8770
	NN	36.173	30.495	43.2648				0.986	0.9442	0.890

SVM

60

 ϵ

60

NN

Aliados

