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ABSTRACT

This paper addresses semi-supervised change detection by
proposing a framework of data fusion based on graph theory
techniques. The proposed framework aims at: 1) The gen-
eration of a multi-modal/temporal pixel based graph, by the
fusion of intra-graphs of each modality/temporal data; 2) the
use of Nyström extension for obtaining the eigenvalues and
eigenvectors of the fused graph and the selection of the final
change map. We validated our approach in two real cases
of remote sensing according to both qualitative and quantita-
tive analyses. The results show that the fusion of temporal
data based on graphs detects changes in remote sensing im-
ages with high accuracy in percentage with respect to missed
alarms(4.8504), false alarms (0.3120), precision (0.9029),
recall ( 0.9515), cohen’s kappa (0.9242) and overall error
(0.4463), outperforming in most of these metrics the state of
the art methods for change detection.

Index Terms— Change detection, data fusion, graph,
multi-modal, multi-spectral, multi-temporal, remote sensing.

1. INTRODUCTION

Change detection (CD) refers to the task of analyzing images
acquired over an area of interest at different times, which al-
lows to quantify the magnitude of a natural disaster (i.e flood-
ing) or changes generated by human activities. This analy-
sis provides fundamental data for environmental protection,
sustainable development, and maintenance of ecological bal-
ance [1, 2]. One of the most known source of data for change
detection are the Multi-spectral (MS) images that contain in-
formation from both spatial and spectral domain (i.e. Landsat
series of satellites). Giving two or more co-registered images,
pixel based approaches carry out change detection by prob-
abilistic thresholding and machine learning methods [3, 4].
Even thought threshold methods are efficient and useful, they

are sensitive to MS image noise and require a high accuracy in
the estimation of the difference image probabilistic distribu-
tion. These issues make threshold methods prone to artifacts
in the final change map [5–9]. Machine learning approaches
divide into two categories: classification and clustering. Clas-
sification methods require a multitemporal reference, which
is difficult to extract from the raw data. Therefore, these
methods are not a practical solution [10]. Clustering tech-
niques [11–15] are affected by parameters initialization, what
may generate local minima in the learning stage. In addition,
the intrinsic brightness distortion in MS images yields inac-
curate change maps [4].

In order to reduce the effect of intra-class small variability
and artifacts presented in MS images, we proposed a graph-
based data fusion approach applied to CD. Our contribution
is the extension of the graph-based model developed in [16].
In this case, we use the mutual information for extracting the
relevant eigenvector that captures the change map. We vali-
date our approach in two real cases: i) a flooding, and ii) a fire
incident. Results show that our model reduces the effects of
artifacts in the final change map, and it achieves low rates of
false alarms in comparison to probabilistic threshold methods
( [5–7]).

2. GRAPH BASED DATA FUSION

2.1. Graph

A graph is a non linear structural representation of data, de-
fined by G = (V,E), where G is the graph, V is a set of
nodes, and E refers to the arcs or edges that explain the di-
rected or undirected relationship between nodes. The edges
have associated a weight wi,j , that quantifies how strong is
the relation between nodes. The common measure used for
each weight is a Gaussian kernel [17]:
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Fig. 1. Flow chart of multi-modal graph.
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2.2. Multi-modal/temporal graph (MMT-G)

Based on the methodology introduced in [16], where a
node is understood as a modality (i.e. image from differ-
ent bands or times, also a mix of both) and it is assumed
that all of the modalities are co-registered, the fusion of
multi-modal/temporal data is carried out by the procedure
described in Figure 1, where the dashed line goes through all
modalities of interest and the output corresponds to the intra-
modal normalized adjacency matrix wk (D−

1
2 WD−

1
2 [18]).

Taking into account that the goal of the fusion step is to cap-
ture the unique information given by each modality. In other
words, it is to maximize the distance between nodes (i.e. the
node that preserves more information) or to minimize the
similarity between nodes. This is given by:

W = min(wk
i,j),with k = 1, 2, . . .K,

where the super-index k denotes the modality, wi,j

represents the weight of the node for each modality (i =
1, 2, . . . , c; j = 1, 2, . . . , ns) and K is the number of modali-
ties.

3. APPLICATION OF MMT-G FOR CHANGE
DETECTION

3.1. Nyström extension

Given the high number of pixels in a MS image, the com-
putational cost of calculating the full matrix W ∈ RN×N is
extremely high (i.e an image with size 1280 × 960 is equiv-
alent to N = 1228800). Therefore, an approximation of this
matrix is computed through the Nyström extension [18]:

W =

[
A B
B> C

]
,

where A ∈ Rns×ns , B ∈ Rns×(N−ns) and C ∈
R(N−ns)×(N−ns). This method approximates C by using
ns samples from the N data (ns � N ). Thus, the eigen-
vectors of the matrix W, can be spanned by eigenvalues and
eigenvectors of A. Solving the diagonalization of A (eigen-
values λ and eigenvectors U: A = U>ΛU), the eigen-
vectors of W can be spanned by Û =

[
U;B>UΛ−1

]>
.

Since the approximated eigenvectors Û are not orthogonal,
as explained in [18], to obtain orthogonal eigenvectors it is
defined S = A + A−

1
2 BB>A−

1
2 .Then, by diagonalization

of S (S = UsΛsUs) the final approximated eigenvectors of
W are given by:

Û =

[
A

B>A−
1
2

]
UsΛs

− 1
2 .

3.2. Change detection scheme based on multi-modal/multi-
temporal graph

To get the change map from the multi-modal/temporal graph
(section 2), we apply the scheme detailed in Figure 2. Here,
the purpose is to attain the best match that reflects the change
produced by any source. To do this, we use the eigenvec-
tors from the MMT-G as descriptors of the change. Neverthe-
less, the number of eigenvectors is equal to the samples taken
from modalities. Hence, we estimate the mutual information
to identify the relevant eigenvector that captures the global
change.

The output in Figure 2 is a vector that contains the mu-
tual information between the prior knowledge (difference im-
age) and the change map generated by the eigenvectors of
the MMT-G. It is important to mention that an image given
by an eigenvector of the MMT-G (Iui

) must be rearranged,
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Fig. 2. Flow chart for change detection.

because the samples are taken from different regions of the
image. In Nyström extension the approximated vector comes
from a matrix with the form [A B]>. However, the real
locations of A and B correspond to the same location were
the samples were taken from the image (samples and com-
plement respectively). Finally the change map detected is the
eigen-image (Iui

) that maximizes the mutual information.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Databases

Before

(a) Mulargia lake

After

(b) Flooded Mulargia lake

Before

(c) Omodeo lake

After

(d) Fire near Omodeo lake

Fig. 3. Satellite images from the NIR band for the flood event
(Dataset A) and from the red band for fire event (Dataset B).

Dataset A: Images (Figure 3 (a-b)) were acquired by the
Thematic Mapper (TM) MS sensor of the Landsat-5 satellite.
The scene represents an area including Lake Mulargia (Sar-
dinia Island, Italy). The images consist of 573 × 479 pixels.

The dates of acquisition were September 1995 (before event)
and July 1996 (after event).

Dataset B: Images (Figure 3 (c-d)) were acquired by the
Operational Land Image MS sensor of the Landsat-8 satellite.
The area includes Lake Omodeo and a portion of Tirso River
(Sardinia Island, Italy). The images consist of 965× 742 pix-
els. The dates of acquisition were July 25, 2013 (before event)
and August 10, 2013 (after event).

4.2. Experimental set-up

We compare the proposed MMT-G with state of the art meth-
ods: Rayleigh-Rice (rR) [6], Rayleigh-Rayleigh-Rice (rrR)
[7], and the classical Kittler–Illingsworth (KI) [5]. We eval-
uate relevant metrics in change detection such as: missed
alarms (MA), false alarms (FA), precision (P), recall (R), Co-
hen’s kappa (K) and overall error (OE).

The number of samples (ns) was fixed at 92 and the stan-
dard deviations (σ) for the kernels of the intra-modal adja-
cency were σ1

lake = 2.5299×10−10, σ2
lake = 1.5561×10−10,

σ1
fire = 2.793× 10−11 and σ2

fire = 1.6533× 10−10, where
the superscripts 1, 2 stands for pre and post event respec-
tively. We set these values through cross-validation using
MatLab R©2017a.1

Table 1. Model Performance for dataset A.
Method MA (%) FA (%) P R K OE (%)
KI [5] 10.2425 1.0490 0.7229 0.8975 0.7941 1.3211

rR-EM [6] 5.7245 4.0147 0.4173 0.9427 0.5605 4.0653
rrR-EM [7] 10.1440 1.0637 0.7203 0.8985 0.7928 1.3324

MMT-G 4.8504 0.3120 0.9029 0.9515 0.9242 0.4463

Table 1 shows the results for dataset A. We observe our
approach outperforms the comparison methods for all met-
rics. Similarly, Table 2 tabulates the outcomes for dataset B.

1To ensure the reproducibility of the proposed method, the code
is publicly available at: https://github.com/DavidJimenezS/
MMT-G-for-Change-detection.git
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Fig. 4. Change map detected with respect to missed alarms (MA), false alarms (FA) and corrrect changed pixels (C).

Table 2. Model Performance of dataset B.
Method MA (%) FA(%) P R K OE (%)
KI [5] 0 3.4291 0.5903 1 0.7262 3.2676

rR-EM [6] 0.0029 3.7382 0.5693 0.9999 0.7080 3.5623
rrR-EM [7] 0.0029 2.1449 0.6973 0.9999 0.8112 2.0440

MMT-G 14.4217 0.1226 0.9718 0.8557 0.9059 0.7960

Although, KI method achieves a perfect score for MA and re-
call (R), the MMT-G outperforms the state-of-the-art meth-
ods in FA, P, K and OE.

Also, Figure 4 shows the behavior of each method in
terms of MA (blue points), FA (red points) and correct
changed pixels (green points). These results are remark-
able because we can see that probabilistic methods have a
considerable number of FA in both datasets. Conversely, the
MMT-G deals well with this issue. FA is mostly generated
by the nearly similar intensity of pixels between real changes
regions and effects produced by the reflectance (i.e. weather
variations, cloud density, daylight differences when the image
was captured). The MMT-G has some limitations. Firstly, for
dataset A (see subfigure 4 (d)), we can observe that border of
the change map is mainly composed by red points (FA). This
is due to the neigboring pixels of the border have a similar
intensity. Also, for dataset B (see figure 4 (h)), the MMT-G
is unable to detect minor changes in the edge of lake Omodeo
and the artifact located in the left-superior corner. For this
reason, there are some missed alarms (MA) represented by
the blue points.

Other aspect to be taken into account in the proposed
model: (i) to decrease the dependence of the results with
respect to the number of selected samples for the Nyström
extension, (ii) to select an alternative metric instead of Eu-

clidean distance (ED) to increase the difference between
intensities in MS images and avoid raising the ED to the
power three, (iii) to explore other kernel types.

5. CONCLUSIONS

In this paper, we introduced a change detection methodology
(MMT-G) based on graphs data fusion. Our main contribu-
tion is a “semisupervised” framework, where we use the mu-
tual information from eigenvectors of the multi-modal graph
and the prior information (the difference image). Experimen-
tal results showed that MMT-G outperformed probabilistic
threshold methods when we evaluated several metrics (MA,
FA, R, P, K, OE) over two real cases of change detection in
remote sensing images.

According to the previous results and analysis, we can
establish the MMT-G is a promising and robust approach for
detecting changes in remote sensing images.
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