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Abstract— This paper addresses the Nonlinear Model Predic-
tive Control of Input-Affine Systems. The Two Point Boundary
Value Problem resulting from the associated Optimal Control
Problem is reformulated as an optimization problem, which is
locally convex under assumptions coherent with the application.
This optimization problem is solved on-line using the gradient
descent method, where the gradients are approximated based
on geometrical information of the dynamic system differential
equations. The resulting control method is summarized in three
algorithms. The proposed controller is easy to implement and
requires no iterations. As a consequence, the suboptimal control
input can be computed in a short time interval, making it ideal
for fast highly nonlinear systems. As an example the attitude
control of a quadrotor is presented. Simulation results show
excellent performance in a wide range of state values, well
beyond linear regimes.

I. INTRODUCTION

Optimal control is a control technique that computes and
applies an optimal control signal to a dynamic system. The
optimal control signal is the solution of an Optimal Control
Problem (OCP) which is an optimization problem, where a
cost function depending on the states of the system and the
control input is minimized having as constraint the dynamic
of the system represented in the corresponding set of dif-
ferential equations. Model Predictive Control (MPC) is the
application of an optimal controller in closed loop. During a
fix time interval an optimal control signal is computed and
applied. At the start of the next time interval the states are
measured and a new optimal control signal applied.

The need to solve a new OCP in each time interval
limits the applicability of MPC to slow or linear plants.
This is due to the fact that being an optimization problem
the solution of an OCP for a nonlinear plant requires the
solution of a nonconvex optimal problem, which demands
large computation efforts and time. That is the reason why
Nonlinear MPC (NMPC) is mainly used in slow plants.

There are two types of approaches to solve a NMPC.
One way aims to solve the OCP using some optimization
technique that reduces the required computation time. The
second type of solution relies on circumventing the need of
solving the OCP using alternative techniques.

On one hand, in the first type of approach the main differ-
ence is the algorithm used to solve the associated nonlinear
optimization problem. In [1] Neighboring External Updates
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were used in the solution of a dynamic optimization problem
applied to MPC. Optimistic Optimization was applied in
[2] to continuous piecewise affine system. Interior Point
methods and Sequential Quadratic Programming applied to
NMPC were studied in [3]. A NMPC for a robotic arm was
considered in [4], the optimization problem was solved using
a Differential Evolution algorithm. In [5] a Recurrent Neural
Network was used to solve the optimization problem.

On the other hand, the second type of solution relies on
necessary and sufficient conditions for optimality or numer-
ical methods that are proven to converge to near optimal
solutions. In [6] the projected gradient method [7] is used to
develop a gradient based nonlinear model predictive control
software GRAMCP. If the nonlinear system is affine with
respect to the input it is possible to use a State-Dependent
Riccati Equation (SDRE) Control. This method relies on
the extended linearization of the nonlinear system and then,
in each sample instant solve an Algebraic Riccati Equation
(ARE) [8]. Although this method has proven efficient for
the control of input affine systems, it still requires the
online solution of an ARE, which depending on the sample
frequency and available hardware may not be possible.

A continuation/GMRES method is proposed in [9] to
solve the NMPC problem. In this approach the continuation
method is coupled with a fast algorithm for linear equations
in order to compute the optimal control law. Dynamic
programming, and numerical methods without NNA for ap-
proximately solving the HJB equation [10] are also contained
in this second class of solutions.

The technique proposed in this paper falls into the second
type of solution, overcoming the need of online optimization
by solving the OCP analytically. This approach is known as
Pontryagin’s Maximum Principle (PMP) and leads a system
of ordinary differential equations (ODEs) whose solutions
are the optimal states and costates, which then are used
to compute the optimal control signal. Depending on the
boundary conditions of the states, PMP produces different
systems of ODEs. In order to compute the optimal control
signal a solution of the system of ODEs that satisfies the
required boundary conditions needs to be found. This is
known as a Two Point Boundary Value Problem (TPBVP).

Common methods to solve the TPBVP include Simple
Shooting Method, Multiple Shooting Method, Shooting to a
Fitting Point and Relaxation Methods [11]. Generally these
techniques rely of numerical analysis and require multiple
iterations as well as the numerical integration of the dynamic
system ODEs. More advanced methods such as the Modified
Simple Shooting Method [12] improve on convergence speed
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and reduction on computational burden, while still requiring
the dynamic system numerical integration.

In this paper a completely different approach is explored.
The TPBVP is reformulated as an optimization problem, that
in the context of NMPC becomes the tracking of an optimal
point corresponding to the initial costates of the system. This
optimization problem is then solved using a gradient-descent
like method. The approximation is valid only in a short time
interval, which is consistent with the application to NMPC.

The proposed technique provides several important advan-
tages over conventional methods to solve TPBVPs. First of
all it requires no iterations and the costates are approximated
in a single step. There is no need to numerically solve the
dynamic system since only the first input is applied and a
significant portion of the computations can be performed off-
line. As a result the proposed control algorithm is both simple
to implement and fast. The required computational burden
is minimal and can be used in both linear and nonlinear
systems.

This paper is organized as follows: in section II the Two
Point Boundary Value Problem is introduced and reformu-
lated as an optimization problem. The proposed controller
is described in section III, which ends with three algorithms
that summarize the control method. An application example
is presented in section IV together with results analysis.
Finally section V discusses conclusions and future work.

II. TWO POINT BOUNDARY VALUE PROBLEM

A. Optimal Control Problem
Consider the following optimal control problem for an

input-affine dynamic system:

min
u(·)

{
J(x,u) =

1
2

∫ t f

to

(
xT Qx+uT Ru

)
dt
}

(1)

s.t. ẋ = F(x)+G(x)u x(to) = x̂o x(t f ) = x̂ f (2)

Where F : Rn→ Rn and G : Rn→ Rn×m are analytic vector
functions of the state x ∈ Rn and u ∈ Rm is the system input.
Q is a positive definite matrix, R is a positive semi definite
matrix and u(t) is the unconstrained system input.

The necessary condition for optimality is given by PMP
in the form of the following system of ODEs:

ẋ = F−GR−1GT
λ (3)

λ̇ =−Qx−∂xFT
λ +

λ T ∂x1GR−1GT λ

...
λ T ∂xnGR−1GT λ

 (4)

Subject to the boundary conditions x(to) = x̂o and x(t f ) =
x̂ f .Where λ = λ (t) ∈ Rn are known as the costates, and the
optimal control input is given by:

u∗ =−R−1GT (x)λ (5)

The solution to this system of nonlinear differential equations
gives the optimal control as well as the state trajectory.

Although there are no constraints in the optimal control
problem the use of this technique is justified for systems with
a high degree of nonlinearities. In such instances linear-based

methods fail to control the system even if the linearization
is done for several operating points. For such cases the
complete system nonlinearities must be taken into account.

B. Power Series Solution of PMP Equations

The dynamic system (2) can be expanded using Taylor
series around the operation states x̄, yielding an equivalent
input-affine dynamic system ẋ = F̃(x) + G̃(x)u. Where the
coefficients of the vector functions F̃ and G̃ are power series
corresponding to the multivariable Taylor expansion of the
original coefficients of F and G (which exist, given that the
vector functions are analytical). As a consequence, equations
(3) and (4) transform accordingly to

ẋ = F̃− G̃R−1G̃T
λ (6)

λ̇ =−Qx−∂xF̃T
λ +

λ T ∂x1G̃R−1G̃T λ

...
λ T ∂xnG̃R−1G̃T λ

 (7)

The resulting system of differential equations although
nonlinear involves only polynomial terms of the states. Thus,
the solution of equations (6) and (7) can be approximated by
a power series of the form (8) for a short time interval.

xi(t) =
∞

∑
k=0

ai
k(t− to)k

λ
i(t) =

∞

∑
k=0

bi
k(t− to)k i = 1, . . . ,n

(8)
The coefficients ai

k and bi
k can be computed via a recurrence

equation obtained by replacing the assumed power series and
corresponding derivatives into equations (3), (4) and then
matching the corresponding coefficients in each side of the
equations.

Given that the original vector functions F and G were
assumed analytic, in a neighborhood of the operation states
x and in a sufficiently small time interval the suboptimal
control signal obtained by replacing solutions (8) in (5)
approaches arbitrarily the optimal solution depending on the
number of terms used in the expansion.

C. Problem Statement

In order to numerically compute the coefficients ai
k and

bi
k of equations (8) not only the recurrence equations are

required but also the initial values for x and λ .
In a practical implementation the initial values of the

states x can be measured. However, the initial values of
the costates λ have no physical interpretation and there is
no direct relation between the initial costates and the final
states besides integration of the vector fields (3) and (4).
Which in general can only be done numerically, demanding
significant computational effort. Limiting the applicability of
this approach to slow dynamical systems.

The problem then becomes: compute the initial costates
λ̂o that together with the initial states x̂o produce the desired
final states x̂ f in a fix time period to − t f satisfying the
dynamic system ẋ = F(x)+G(x)u.
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III. GRADIENT-DESCENT BASED NMPC

A. Proposed Solution of the TPBVP

The TPBVP can be formally stated as an optimization
problem in the following way:

min
λo∈Λo

{
J(λo) = (x f − x̂ f )

T Q̂(x f − x̂ f )
}

(9)

s.t. x f = ϕx̂o(λo)

Where Q̂ is a positive definite matrix and ϕx̂o(λo) is
a vector function that returns the final states x f obtained
by integrating the vector fields (3) and (4) with the initial
conditions x(to) = x̂o and λ (to) = λo. The corresponding
coefficients of the vector function ϕx̂o are denoted ϕ i

x̂o
.

The functions ϕ i
x̂o

are smooth given that the vector fields
(3) and (4) are smooth. However, there is no guarantee of
convexity that could aid in the solution of the optimization
problem (9), thus two further assumptions are made:

1) Previous states and coestates xo and λo are known
to produce final states x f close to the desired final
states x̂ f . Moreover these previous states and costates
are in a neighborhood of the current states x̂o and
optimal costates λ̂o. This assumption makes sense in
the context of model predictive control, since in each
sample time the initial and final states vary with a
bounded rate of change.

2) The problem is feasible. That is, there exists at least
one solution λ̂o such that ϕx̂o(λ̂o) = x̂ f . Furthermore
in a neighborhood of λ̂o that contains λo the function
ϕx̂o(·) is convex. This requirement relies on the sample
time and the intrinsic geometry of the vector fields.

Returning to (9), if the matrix Q̂ is diagonal the cost
function becomes

J =
n

∑
i=1

qi(ϕ
i
x̂o
(λo)− x̂ f

i)2

Thus

∂

∂λ
j

o
J = 2

n

∑
i=1

qi(ϕ
i
x̂o
(λo)− x̂ f

i)
∂

∂λ
j

o
ϕ

i
x̂o
(λo)

Using the two assumptions, the function ϕ i
x̂o

can be locally
approximated by

ϕ
i
x̂o
(λo)≈ ϕ

i
xo(λo)+∇ϕ

i
x̂o
(λo) · (λo−λo)

Hence
∂

∂λ
j

o
ϕ

i
x̂o
(λo)≈

(
ϕ

i
x̂o
(λo)

) j

Finally, the gradient of the cost function J can be approxi-
mated locally by:

∇J
∣∣∣
λo=λo

= 2
n

∑
i=1

qi(x f
i− x̂ f

i) ·∇ϕ
i
xo(λo) (10)

The problem becomes the computation of ∇ϕ i
xo
(λo). Assum-

ing sufficiently small sample periods where the states do

not change significantly it is possible to make the following
approximation:

∇ϕ
i
xo(λo)≈ ∇λ (ẋ

i)|xo,λo
(11)

Where ∇λ denotes the gradient with respect to λ only. The
great advantage of equation (11) is that it can be computed
analytically off-line, thus ∇J reduces to a linear combina-
tion of known gradients whose weights are the differences
between the measured and desired final states x f

i − x̂ f
i.

Furthermore, assuming an input affine system the divergence
∇λ (ẋi) is simply the i-th row of the matrix G(x)R−1G(x)T

and only depends on the states x. As a consequence equation
(10) can be written in matrix form resulting in equation (12).

∇J = G(xo)
T R−1G(xo)(x f − x̂ f ) (12)

Finally the optimization problem (9) is solved using the clas-
sical gradient descent method. Approximating the gradient
with equation (12).

B. Model Predictive Control Algorithm
The aforementioned procedure can applied to nonlinear

model predictive control in two algorithms: first an off-line
algorithm were the divergences are computed and the initial
costate found and then the iterative on-line algorithm used to
compute the suboptimal control law in each sample interval.

Both algorithms have the following inputs:
• The sample time interval Ts.
• A vector of references for each state xi

ref[k], 1≤ k≤ K.
• An initial state xo.
• The dynamic model ẋ = F(x)+G(x)u.
• A gradient descent stop criteria ε .
• The step size for the gradient descent method µ .

The objective of the off-line algorithm (algorithm 1) is
to compute off-line the necessary functions and the initial
optimal costates.

Algorithm 1 Off-line computations
1: Fix the order of approximation N and compute the Taylor

polynomial of order N of the dynamic system

ẋ = F̃(N)(x)+ G̃(N)(x)u (13)

2: Using the approximation functions F̃(N) and G̃(N) compute the
associated PMP equations (6) and (7).

3: Assume a power series solution for the states and the costates.

xi(t) =
∞

∑
n=0

ai
ntn

λ
i(t) =

∞

∑
n=0

bi
ntn

4: Replace in the differential equations obtained in the previous
step and match coefficients of the same power to obtain the
recurrence equation for the coefficients ai

n and bi
n.

5: Initialize a random seed for λo and ∇J.
6: while ε < |∇J| do
7: Compute the final states x f = ϕxo(λo).
8: Compute the approximation of the cost function gradient

∇J
∇J = G(xo)

T R−1G(xo)(x f − xref[k])

9: Update the initial optimal λo = λo−µ∇J
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The on-line algorithm (algorithm 2) computes the subop-
timal input signal for each sample period using the approx-
imation of the gradient and the state errors as weights.

Algorithm 2 On-line computations
1: Fix a limit M for the approximate solutions.
2: while 1≤ k ≤ K do
3: Using xo, λo and the recurrence equations compute the

power series approximate solution to PMP equations.

xi(t) =
M

∑
n=0

ai
ntn

λ
i(t) =

M

∑
n=0

bi
ntn i = 1,2, . . . ,n

4: Compute the suboptimal control law

u(t) =−R−1GT (x(t))λ (t)

5: For t < Ts apply the suboptimal control law (note that in
each sample instant the initial time to is equal to 0, therefore
the final time t f becomes Ts).

6: Measure the final states x f .
7: Compute the approximation of the cost function gradient

∇J

∇J = G(xo)
T R−1G(xo)(x f − xref[k])

8: Update the new initial costates

λo = λo−µ∇J

9: Update the new initial states xo = x f .

Note that if only the first control input is applied x(t) =
a0 and λ (t) = b0. Moreover the initial conditions imply
that a0 = xo and b0 = λo, hence algorithm 2 simplifies to
algorithm 3.

Algorithm 3 Simplified on-line computations
1: while 1≤ k ≤ K do
2: For t < Ts apply the constant suboptimal control law

u =−R−1GT (xo)λo

3: Measure the final states x f .
4: Compute the approximation of the cost function gradient

∇J

∇J = G(xo)
T R−1G(xo)(x f − xref[k])

5: Update the new initial costates

λo = λo−µ∇J

6: Update the new initial states xo = x f .

IV. APPLICATION EXAMPLE

As an application example the attitude control problem of
a quadrotor is considered.

A. Quaternion-Based Attitude Model
The attitude model is divided into two parts:
1) Angular rates of change with state variables p, q and

r that represent the rates of change in roll, pitch and

yaw. The inputs of this subsystem are torques τψ , τθ

and τφ and the parameters are the moments of inertia
Ix, Iy and Iz in the x, y and z axes respectively.

ṗ =

(
Iy− Iz

Ix

)
qr+

τφ

Ix

q̇ =

(
Iz− Ix

Iy

)
pr+

τθ

Iy

ṙ =
(

Ix− Iy

Iz

)
qp+

τψ

Iz

2) Angular position with state variables ψ , θ and φ

the Euler angles roll, pitch and yaw respectively. The
inputs are the angular rates of change p, q and r.

φ̇ = p+qsinφ tanθ + r cosφ tanθ

θ̇ = qcosφ − r sinφ

ψ̇ =
sinφ

cosθ
q+

cosφ

cosθ
r

The angular position subsystem is highly nonlinear and
although it is possible to find a Taylor series expansion, the
alternative representation using quaternions yields an already
expanded form:

q̇0 =
1
2
(−q1 p−q2q−q3r)

q̇1 =
1
2
(q0 p+q2r−q3q)

q̇2 =
1
2
(q0q−q1r+q3 p)

q̇3 =
1
2
(q0r+q1q−q2 p)

In the quaternion-based attitude model a single unit quater-
nion q = qo+q1 î+q2 ĵ+q3k̂ is used to represent the rotation
in space of the quadrotor, thus relating its angular position.
The angular state variables φ , θ and ψ become the com-
ponents of the quaternion that describes the rotation of the
quadrotor in space q0, q1, q2 and q3.

B. Control Architecture
As with the model, the control architecture is divided

into two parts: the angular rate of change control and the
quaternion-based angular position control:

1) Angular rate of change control: given the symmetry of
the dynamic system it is straight forward to control p,
q and r using feedback linearization simply by making
the torques

τψ = upIx− (Iy− Iz)qr

τθ = uqIy− (Iz− Ix)pr

τφ = urIz− (Ix− Iy)pq

The overall dynamic decouples into three separate
systems

ṗ = up q̇ = uq ṙ = ur

2) Quaternion-based angular position control: writing the
system in standard input affine system (2) (renaming
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the state variables x1 = q0, x2 = q1, x3 = q2 and x4 = q3)
yields:

F(x) =


0
0
0
0

 G(x) =
1
2


−x2 −x3 −x4
x1 −x4 x3
x4 x1 −x2
−x3 x2 −x1


This controller is implemented using algorithms 1 and
3.

C. Simulation and Results
For the simulation the following parameters were used:
• Total time Tf = 3s.
• The sample time interval Ts = 1ms.
• An initial state xo = xref[0].
• A gradient descent stop criteria ε = 10−3.
• The step size for the gradient descent method µ = 200.
• Control input cost matrix R = diag(10,15,20).
Assuming that the actuators frequency update is f = 1kHz

in each sample interval the input is constant, thus the on-line
simplified algorithm is used.

The angular references ψref, θref and φref were obtained
from the xy trajectory shown in figure 1.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x [m]

-1.5

-1

-0.5

0

0.5

1

1.5

y
 [

m
]

Fig. 1. xy trajectory used to create the attitude references.

The ψref, θref and φref references were then translated
into quaternion references with the following transformations
[13]:q0

q1
q2
q3

=

cos(φ/2)cos(θ/2)cos(ψ/2)+ sin(φ/2)sin(θ/2)sin(ψ/2)
sin(φ/2)cos(θ/2)cos(ψ/2)− cos(φ/2)sin(θ/2)sin(ψ/2)
cos(φ/2)sin(θ/2)cos(ψ/2)+ sin(φ/2)cos(θ/2)sin(ψ/2)
cos(φ/2)cos(θ/2)sin(ψ/2)− sin(φ/2)sin(θ/2)cos(ψ/2)


Figure 2 shows the reference and real quaternion com-

ponents, while figure 3 presents the corresponding angular
position references and states.

Table I summarizes important information from figure 3. It
presents the minimum and maximum values for each angle
(roll, pitch and yaw) as well as the Mean Absolute Error
(MAE) given by:

MAE =
1
n

n

∑
k=1
|xreal[k]− xref[k]|

Note that because of the short time interval in which the
maneuver is performed it requires a displacement across a
wide range of values for the angular states. As a result, the

0 1 2 3

 time [s] 

0.8

0.85

0.9

0.95

1

q
0

0 1 2 3

 time [s] 

-0.5

0

0.5

q
1

0 1 2 3

 time [s] 

-0.5

0

0.5

q
2

0 1 2 3

 time [s] 

-0.2

-0.1

0

0.1

0.2

q
3

Fig. 2. Quaternion component references (dotted orange line) and real
states (solid purple line).
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Fig. 3. Angular position results. The reference in the dotted orange line
while the real states are in purple solid line.

roll and pitch angles range from −45.03◦ to 59.6◦ and 53.2◦

to 67.7◦ respectively, well beyond the linear regime.

Angle Min Max MAE
Rad Deg Rad Deg Rad Deg

Roll -0.78 -45.03 1.04 59.6 0.13 7.8
Pitch -0.93 -53.2 1.18 67.7 0.32 18.6
Yaw -0.34 -19.5 0.25 14.6 0.09 5.6

TABLE I
RESULTS OF THE SIMULATION.

As a consequence of the wide dynamic range of roll
and pitch angles linearization-based controllers can not be
applied, thus the proposed technique could be compared only
with advanced nonlinear controllers such as gain-scheduling
or sliding modes. These controllers however, would require
a much more complex analysis and control algorithm than
algorithm 3.

Table I also shows a significant variation in yaw although
the reference is always zero. This is due to the fact that the
angles are deeply coupled and by applying only the first input
the control signal is suboptimal.

Figure 4 presents the corresponding inputs to the attitude
subsystem. With respect to the angular rate of change sub-
system a simple P controller was implemented coupled with
the aforementioned feedback linearization.

In figure 5 the response of the control system is depicted
for a perturbation of 20◦ in the roll angle at time t =
1.5s. Note that although it is a significant perturbation the
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Fig. 4. p, q and r inputs

controller is able to overcome it. This is expected given that
the system already operates in a wider range of angles.
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Fig. 5. Angular position results with perturbation of 20◦ in the roll angle
at time t = 1.5s . The reference in the dotted orange line while the real
states are in purple solid line.

V. CONCLUSIONS AND FUTURE WORK

In this paper a new approach to Nonlinear Model Pre-
dictive Control for input-affine systems is presented. The
control is based on a power series solution of Pontryagin’s
Maximum Principle differential equations and a modified
gradient-descent method for the computation of the initial
optimal costates and the solution of the Two Point Boundary
Value Problem.

In section II the considered Optimal Control Problem is
introduced, the solution using power series explained and the
Two Point Boundary Value Problem is reformulated as an
optimization problem. The proposed controller is presented
and explained in section III, which ends in subsection III-B
with three algorithms that summarize the implementation of
the proposed controller to NMPC.

An application example is presented in section IV where
the attitude control of a quadrotor is used to test the proposed
algorithm. Subsection IV-A introduces the angle-based and
quaternion-based attitude models and the control architecture
explained in IV-B. Finally the simulation results are shown
and analyzed in subsection IV-C.

In general, despite being a very simple algorithm it ex-
hibits very good performance. Simulation results show that
the controller performs well in a state space beyond lin-
earization regimes. The proposed suboptimal control not only

reduces the required on-line computations to a minimum but
also the necessary off-line calculations. The independence
of linearity, ease of implementation and low demand of
computational power makes this controller an ideal option
for fast nonlinear systems, such as the presented quadrotor.

Regarding future work it divides into two. In first instance
future theoretical development. In terms of error bounds,
prove of convergence and comparison with existing nonlinear
optimal control as well as advanced control techniques. Fur-
ther analysis of parametric uncertainty, external perturbations
and noise. Secondly experimental validation of the pro-
posed controller in any nonlinear plant and comparison with
similar methods such as the continuation/GMRES method,
GRAMPC and (SDRE) Control.
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