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Abstract. Morphological information of plants is an essential resource
for different agricultural machine vision applications, which can be
obtained from 3D models through reconstruction algorithms. Three
dimensional modeling of a plant is an XYZ spatial representation used
to determine its physical parameters from, for example, a point cloud.
Currently two low-cost methods have gained popularity in terms of 3D
object reconstructions in 360◦ employing rotating platforms, based on 2D
LiDAR and Kinect. In this paper, these two techniques are compared by
getting a 3D model of a Dracaena braunii specie and evaluating their
performance. The results are shown in terms of their accuracy and time
consumption using a Kinect V1 and a LiDAR URG-04LX-UG01, a well-
performance low-cost scanning rangefinder from Hokuyo manufacturer.
In terms of error calculation, the Kinect-based system probed to be more
accurate than the LiDAR-based, with an error less than 20% in all plant
measurements. In addition, the point cloud density reached with Kinect
was approximately four times higher than with LiDAR. But, acquisition
and processing time was about twice than LiDAR system.

Keywords: Low-cost · Phenotyping · LiDAR · Kinect · Point clouds ·
3D modeling

1 Introduction

The importance of plant phenotyping, i.e. the determination of plant structures
and morphological parameters is widely recognized among researchers from dif-
ferent scientific fields. Phenotyping platforms are necessary to allow the determi-
nation of plant features and the formulation of genomic models for plant breed-
ing. An appropriate plant surface sampling, with a convenient resolution of the
3D modeling, leads to different morphological measurements such as leaf area
and angle, and plant topology. The requirements for real-time responses to post-
processing data are an important task in different perception fields. Therefore,
in recent years, a new generation of 3D sensors has appeared, known as depth
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cameras, which main advantage is the rapid acquisition of depth images. Some
of them are based on structured light emission sensors, such as the Microsoft
Kinect or Asus Xtion, and others on laser scanning sensors, using what is known
as Time of Flight (ToF) technology, representing a revolution in 3D imaging
due to its performance offered at a low cost. ToF allows getting distances by
measuring phase difference between the modulated signal emitted and received
with a specific wavelength. LiDAR devices are based on ToF and its use in phe-
notyping applications is not entirely new. However, its application has not yet
been fully explored. LiDAR-based techniques are popular in field and laboratory
applications, given their wide resistance to dust, robustness to changing lighting
conditions, wide measurement range, fast time response and ease of deployment.

Besides, they are suitable for 3D plant and foliage reconstruction, a funda-
mental factor in obtaining characteristic plant models and their monitoring over
time. The use of LiDAR technology in the phenotyping process includes the
measurement of density and volume in plants and crops for the estimation of
different parameters such as height, biomass, leaf indices, etc. [10,16]. LiDAR
sensors are frequently chosen, in a large number of applications, to provide range
data, such as plant differentiation by height and pattern, automatic identifica-
tion of stem and leaf organs using point clouds obtained from the 3D scanning
of barley and other cereals, according to their geometric shapes and histograms.
They are also used to create virtual plants and tree models on large-scale phe-
notyping platforms. The 3D models obtained with LiDAR sensors can also be
merged with visual information to generate geometric and multispectral models
that allow developing more complete phenotyping processes, and also new clas-
sification and automatic processing techniques used for pest and disease control,
irrigation, fertilization and plant stress, among others.

Kinect devices introduced by Microsoft (version V1 and V2) as an inter-
face to track body position for Xbox videogame consoles have gained popular-
ity in engineering and robotics applications [12]. One of its main advantages
is its low cost compared to other sensors. Kinect sensors cost about 0.1% of
commercial research LiDAR systems. The Kinect projects a pattern of points
using an infrared laser on the scene of interest. The target is captured by an
infrared camera and aligned with the image obtained from a standard one. In
this way, the Kinect produces a point cloud with XYZRGB dimensions in a dis-
tance range from 0.5 to 4 m approximately. Compared to version 1, the Kinect
V2 has improved characteristics like higher video resolution of 1920×1080 pixels,
data transfer rate of 30 fps, field of view of 70◦ × 60◦ and better signal to noise
ratio in daylight scenes [1]. Given the recent interest in this type of work and
the absence of comparative technical studies between these types of sensors, the
aim of this work is to present and compare two methods for 3D plant modeling
from a point cloud. The following section summarizes the basics of ToF percep-
tion and briefly reviews the literature dealing with the generation of plant point
clouds. Section 3 describes the elements and methods used. Finally, Sects. 4 and
5 present the experimental results and conclusions.
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2 Related Work

Although the state-of-the-art mentions the generation of 3D models using mul-
tivision systems, these are not included among those that provide depth clues
and require a neutral background, easily separable from the object due to its
strong contrast, to facilitate better segmentation [11]. Several 3D reconstruction
applications based on 2D LiDAR sensors have been developed in the literature.
Most of them are installed on mobile platforms for outdoor applications that
present high-quality results after a camera calibration process [2,5,8,9]. How-
ever, some equipments are used indoors for phenotyping purposes. Wang et al.
[14] reported accurate results in an indoor environment with a lower-cost RP-
LiDAR laser scanner integrated into a mobile proximal detection system. Thapa
et al. [13] proposed a scanning system consisting of a SICK LMS511 LIDAR and
a 360◦ rotating platform. Panjvani et al. [7] presented a LIDAR system based on
a SICK LMS400 device integrated in a linear moving platform for leaf feature
extraction. Unfortunately, most of them are based on expensive sensors, which
are not easily accessible to many users.

Therefore, several approaches have been developed for the reconstruction of
3D models using low-cost sensors such as Kinect, in particular for plant pheno-
typing. Li et al. [3] introduced a method to segment leaves without occlusions
from three different types of 3D image platforms: stereo cameras, a Kinect V2
sensor and a multi-vision stereo camera in a mobile phone, scanning four types
of plants. The technique included the automatic estimation of morphological fea-
tures such as area, length and width of the leaf. Point coverage rate between 87%
and 99% and accuracy of almost 100% were obtained in all cases. McCormick
et al. [5] developed a semiautomatic image acquisition and processing pipeline
for shoot segmentation of a sorghum variety. For each plant, a series of 12 depth
and RGB images were acquired and the resulting point clouds were processed to
segmented meshes. Image-based measurements like shoot and leaf height, sur-
face area, leaf width and angle were well correlated with manual measurements.
Root-Mean-Square Difference (RMSD) coefficient of variation for the measure-
ments ranged from 0.07 to 0.3 within the same range as real values. Yamamoto
et al. [15] employed a method to extract a 3D model and evaluate volume and
diameter for fruits and vegetables. Both Kinect V1 and V2 were used to create
111 3D models. Depth and color information were processed and several features
of 3D models were examined using an open-source software. Both model shapes
were similar to the real fruit. However, they were slightly different from each
other. The Kinect V2 model had a more uneven shape because of noise from the
TOF sensor. The accuracy of the fruit volume estimate and the largest diameter
was 93% and 86% respectively, with Kinect V2. Liu et al. [4] identified different
kind of fruits and leaves using RealSense F200 and Kinect V1 depth sensors.
The RealSense F200 has a color and an infrared cameras and an infrared laser
projector. 120 depth data samples were collected from one plant, placed in 64
different positions modified manually and from different angles. Results showed
that little occlusion and low adhesion brought the fruit recognition rate up to
80–100%. Different species with occlusions had a lower detection rate.
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3 Materials and Methods

Two experiments were carried out to produce a three-dimensional point cloud of
plants. The first experiment was done with a Kinect V1 sensor and the second
was based on a 2D LiDAR device. The basic principle of both scanners is optical
depth measurement. The three-dimensional modeling system consisted of a depth
sensor placed on a fixed tripod, a rotating disk moved by a stepper motor, a
drive motor, a power source, and a computer used to control it, as shown in
Fig. 1a. The modeling methods were written in Python 3.7 language on an Intel
Core i5 7th Gen 2.5 GHz with 8 GB of RAM to control the turntable under
Ubuntu 16.04 OS and using Open3d [17] library for 3D point cloud registration
process. The computer system was connected via USB to an Arduino Nano,
which controlled a stepper motor through a driver V44A3967. The disk angle
was estimated with an open-loop counter algorithm, which returned the position
to the master system every time it moved. Geometrical information from the
depth sensor (LiDAR 2D or Kinect) was acquired using a ROS (Robot Operating
System) environment with a Kinetic version, once the initial and final angles and
angular steps were configured. The obtained point clouds were stored in LASer
format and visualized using the free access software CloudCompare. The stepper
motor used in the rotating platform shown in Fig. 1b had a torque of 9.4 kg/cm,
a gearbox with a ratio of 100:1 and an angular speed between 1.2 to 3.6 RPM.
The motor, which was adapted to a mechanism by a worm, had the capacity
to move every 0.36◦. The worm wheel had 26 teeth and a transmission ratio
of 36:1, which increased the torque system and angular resolution, resulting in
the following final mechanical characteristics: torque of 300 kg/cm, a gearbox of
3600:1 and the ability to move the disc every 0.01◦. However, the final angular
speed was reduced to a range of 0.033–0.1 RPM. The turntable was modeled
in SolidWorks 2018. For the experimental setup a plant of the species Dracaena
braunii was scanned, with an approximate height of 0.8 m measured from the
base of the pot to the top of the plant, in a controlled environment using white
artificial light.

3.1 LiDAR Modeling

This experiment was based on a 2D LiDAR sensor URG-04LX-UG01, one of
the simplest of the manufacturer Hokuyo. Basically, the laser emits an infrared
beam on a rotating mirror, which changes its direction, illuminating a specific
region of the scene. The reflected light is then used to determine the distance
to the target. The main specifications of the scanner are shown in Table 1.
The acquisition protocol and the software used were based on an earlier version
developed by Murcia et al. [6]. They presented a methodology for the calibration
and reconstruction process of the same sensor and motor unit. However, in this
work, a new kinematic model was established for the developed platform system.

Kinematic Model. The purpose of the kinematic model is to acquire a 3D
initial coordinate Pi to a reference coordinate frame Po located in the center of
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Fig. 1. Main components of the scanning system: (a) functional diagram; (b) repre-
sentation of the used rotating platform and its main components.

Table 1. Main specifications of the 2D LiDAR sensor URG-04LX-UG01.

Feature Hokuyo URG-04LX-UG01

Measurement distance 20 to 5600mm

Resolution 1 mm

Scan angle 240◦

Angular resolution 0.36◦ (360◦/1024 steps)

Accuracy ± 30mm (For distance above < 10000 mm)

Scanning time 100 ms/scan

Power source 5 VDC ± 5% (USB Bus Power)

the disk for relative LiDAR detection. The final 3D point cloud in Po is repre-
sentated in a XY Z space as a function of LiDAR horizontal angle θ and radial
distance γ, as well as the disk angle β and system constant parameters, which
represent the distances between the sensor and the target. The transformation
matrix Tp = Rz ∗T in 3D space was obtained using homogeneous coordinates by
means of a [4 × 4] dimensional matrix. Where T is a translation transformation
with three parameters tx, ty and tz, which represent the respective translations
of Po along X,Y,Z axes and Rz is a rotation matrix around Z axis (yaw). Each
one of these matrices is described below. Thus, the final XY Z reconstruction of
the studied plant was calculated with a three-frame transformation based on Tp

as shown below:

T =

⎡
⎢⎢⎣

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎤
⎥⎥⎦ , Rz =

⎡
⎢⎢⎣

cos(γ) −sin(γ) 0 0
sin(γ) cos(γ) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (1)
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Po = T ∗ Rz ∗ Pi ⇒ Pi =

⎡
⎢⎢⎣

r ∗ cos(θ)
0

r ∗ sin(θ)
1

⎤
⎥⎥⎦ (2)

Pi is represented as an input XY Z matrix with dimensions [4xm], where m
is the number of samples or points. Where r is a range vector of m samples
obtained from a LiDAR ROS node, which represent the measurement of each
LiDAR angle θi.

3.2 Kinect Modeling

The main technical characteristics of the Kinect sensor are the resolutions of its
color and depth cameras: 320×240 pixels and 640×480 pixels respectively. The
TOF camera has a depth range of 0.5 to 3.5 m. It was mounted at a height of
1.5 m with a horizontal view at an angle of less than 27◦. The camera’s horizontal
and vertical fields of view are 57◦ and 43◦ respectively and the sampling rate is
30 fps. The Kinect sensor was mounted on the same tripod used by the LiDAR
platform. The data capture process took approximately 1 h and 40 min and 361
point clouds were obtained.

Point Cloud pre-processing. Initially, the algorithm pre-processed the data
in four stages: Down-sampling, statistical removal of points, outliers removal,
and estimation of normal vectors. Voxel downsampling function uses a regular
voxel mesh to create a uniformly reduced point cloud. The algorithm works in
two steps: Points are grouped into voxels. Each occupied voxel generates an exact
point by averaging all the points within it. The statistical outlier removal func-
tion is a filter that eliminates points that are farther away from their neighbors
compared to the point cloud average. A function of the standard deviation of
those average distances is established as a threshold level. The lower this num-
ber, the more aggressive the filter will be. The radius outlier removal function is
a filter that eliminates points that have few neighbors on a given sphere around
them, by setting the minimum number of points on the sphere and the radius
of the sphere that will be used to count the neighbors. Finally, the function to
estimate normals finds adjacent points and calculates the principal axis of the
adjacent points using analysis of covariance.

ICP Algorithm. Once the point clouds were pre-processed, they were merged
into a single one, also unifying the framework of reference. For this purpose,
the point-to-plane ICP (Iterative Closest Points) algorithm was used, which
minimizes the Root-Mean-Square-Error RMSE between the transformed point
clouds. After fusion, new outliers may appear. To remove them, a point optimiza-
tion method was performed based on the neighboring nodes and the voxel size.
This step also reduces possible false alignments between edges and, avoid dupli-
cation and excess points. The ICP algorithm requires a number of parameters
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to be tuned. The setting values found are: The voxel size for sample reduction
should be 0.001 or less to improve performance. The threshold of the recording
edge should be 0.006 or less, the search radius equal to 0.5 cm and maximum
of neighbors equal to 100. The number of iterations of the fixed ICP in 5 for
greater efficiency. Although the point cloud range is not required for processing,
it is included to determine the fitting error between the point clouds.

4 Results

Figure 2 shows a frontal and top view of the resulting 3D point cloud. 3D repre-
sentation had a density of 558639 points and the whole acquisition and processing
took about 1.25 h, with no color information. Figures 3a and 3b show a frontal
view of the resulting 3D point cloud. Unlike the reconstruction done by LiDAR,
the Kinect includes dimensions of color information (Red, Green and Blue, RGB)
in the acquired data. The final 3D reconstruction had 2230527 points. The reg-
istration algorithm took 45 min meanwhile the complete procedure took about
2.5 h.

Fig. 2. Reconstructed 3D plant point cloud with Hokuyo URG-04LX-UG01 using a
color scale based on altitude: a) side view of point cloud, b) top view of point cloud.

4.1 3D Modeling Comparison

Both methods were tested in the same laboratory conditions using the same
rotating platform and acquisition software. The comparative results are summa-
rized in Table 2. As was expected, experiment carried out with Kinect presented
a higher point density and processing time regarding the procedure with LiDAR.
A second comparison was performed to determine an error estimation in four
measurements of the plant called A,B,C,D as shown in Fig. 3c according to
Eq. 3.
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Fig. 3. (a) side view of reconstructed 3D point cloud with Kinect using a color scale
based on altitude. (b) side view of reconstructed 3D point cloud with Kinect using
color information. (c) Illustration of manual plant measurements: (A) Height of the
first stem. (B) Diameter of the second stem, (C) Diameter of the first stem (D) Pot
diameter.

Table 2. Comparative features of generated point clouds.

Feature Kinect V1 URG-04LX-UG01

Number of points 2230527 558639

Acquisition time [s] 6000 4530

Processing time [s] 2735 4

Color Yes No

error[%] =
∣∣∣∣
X − W

W

∣∣∣∣ (3)

where X is the software measurement from 3D point cloud using point picking
tool in CloudCompare and W is the real measurement obtained in the laboratory,
called reference. Table 3 shows the measurement obtained from each point cloud
and the error calculated in each case.

As can be observed on Table 2, the acquisition and processing time was
almost double in the Kinect-based system compared to the LiDAR one. This
was mainly due to the fact that the Kinect takes longer to acquire the data,
in addition to simultaneously obtaining the color information. In this case, the
number of points in the acquired point clouds was exactly four times higher
than that obtained with LiDAR. The acquisition rates measured in points per
second for the Kinect and LiDAR systems were 255 points/s and 123 points/s
respectively. Thus, the Kinect, despite requiring more time, was more than twice
as fast as LiDAR in acquiring relevant plant data. According to the results in
Table 3, the Kinect-based system had the highest accuracy, as the error found in
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Table 3. Error calculation from point clouds and manual measurements.

Measurements Kinect V1 URG-04LX-UG01

Letter Ref. [mm] meas. [mm] Error[%] meas. [mm] Error [%]

A 280 308.54 10.19 246.83 23.86

B 14 16.79 19.92 23.09 64.92

C 15 15.55 3.66 22.99 53.26

D 131 117.3 10.45 210.13 60.40

the plant parameter measurements was lower than with LiDAR. In both cases,
the largest error occurred with the B parameter. This error was due to the
characteristic occlusions of the plant architecture making it difficult to correctly
acquire the points in that particular part of the plant.

5 Conclusions

In this paper, two low-cost three-dimensional modeling of the plant based on
rotating platform and depth sensors are presented. Two point cloud reconstruc-
tion experiments based on 2D LiDAR and Kinect V1 were performed. The Kinect
procedure presented better results, in terms of point cloud density and rendering
quality, due to the color information used. However, acquisition and processing
times were longer than those of 2D LiDAR. Results using Hokuyo URG-04LX-
UG01 showed a point cloud acquisition without color or intensity information
that required less time. Employing the open source software CloudCompare, the
3D point clouds obtained with LiDAR were filtered to reduce noise. On the other
hand, the lowest error was achieved with the Kinect sensor, so it turned out to
be the most suitable system for accuracy. In addition, the LiDAR stage required
a kinematic model, so a characterization of the data was necessary to determine
the model parameters, which could introduce distortions in the point clouds
if they were far from the real values. The acquisition data and reconstruction
codes, as well as the LAS files obtained, are available online at https://github.
com/HaroldMurcia/plant reconstruction.git. As future work, the improvement
of the 3D reconstruction results using the LiDAR system by introducing a new
sensor with better technical characteristics, such as divergence angle, resolution,
signal-to-noise ratio and fusion techniques between digital cameras and LiDAR,
is proposed.
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