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Introduction
Identifying which genes are involved in particular biological processes is relevant
to understand the structure and function of a genome. A number of techniques
have been proposed that aim to annotate genes, i.e., identify unknown biological
associations between biological processes and genes. The ultimate goal of these
techniques is to narrow down the search for promising candidates to carry out
further studies through in-vivo experiments.
Our work presents an approach for in-silico prediction of functional gene anno-

tations. It uses existing knowledge body of gene annotations of a given genome
and the topological properties of its gene co-expression network, to train a super-
vised machine learning model that is designed to discover unknown annotations.
The approach is applied to Oryza sativa japonica (a variety of rice).

Methodology

Gene Co-expression Network

Gene co-expression networks are represented as undirected graphs where each
vertex identifies a gene and an edge the level of co-expression between two
genes.

Figure 1: Example of a co-expression network.

The information is taken from the ATTED-II database [2]. The gene co-
expression network G = (V, E, w) comprises 19 665 vertices (genes) and 553 125
edges. The weight function w : E 7→ R≥0 measures the co-expression between
any pair of genes.

Gene Functional Annotations

Each gene is associated with the collection of functional annotations (biological
processes) to which it is related (e.g., through in-vivo experiments).
The annotation information is taken from the RAP-DB [3] database, a compre-

hensive set of gene annotations for the genome of rice. There are 633 annotations
for biological processes (i.e., pathways to which a gene contributes). It is impor-
tant to note that genes may be associated to several annotations.

Topological Properties

Given the co-expression network G = (V, E, w), properties of its network struc-
ture are computed for gene annotation prediction. Topological measures consid-
ered for each gene u are the following:

• degree: number of edges incident to u;

• eccentricity: maximum shortest distance from u to any vertex in its connected
component;

• clustering coefficient: ratio between the number of triangles (3-loops) that pass
through u and the maximum number of 3-loops that could pass through it;

• closeness centrality: the reciprocal of the average shortest path length from u;

• betweenness centrality: the amount of control that u has over the interactions
of other nodes in the network;

• neighborhood connectivity: the average connectivity of all neighbors of u;

• topological coefficient: the extent to which u shares neighbors with other nodes.

Supervised Training
Two models are trained per biological function for predicting gene annotations.
Namely, one in which the topological measures of G are used and another one in
which they are not. The dataset summarizes data for 19 665 genes, 615 annota-
tions, and 7 topological measures.
The dataset is heavily imbalanced since 77% of annotations are related to less

than 10 genes each one. Only annotations associated with at least 10 genes are
considered for prediction (141). The Synthetic Minority Over-sampling TEch-
nique (SMOTE) is used to over-sample the minority class.
The supervised machine learning technique XGBoost is used for annotation pre-

diction [1]. This technique is a Python implementation of gradient boosted deci-
sion trees.

Results
Figure 2 shows that the model trained with additional information of the topo-
logical measures can be more reliable in some cases.
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Figure 2: Balanced accuracy for the prediction of functional annotations with the two
trained models (with and without topological measures).

A false positive analysis is applied to the annotation predictions: the idea is to
identify genes that tend to be classified as a false positive because they are can-
didate genes on which lab experimentation can focus on. This set of genes is
considerably small for some annotations as shown in Table 1 and can therefore
be seen as good candidates for experimental verification.

ID Biological process # Genes Max FP # FP
0006807 nitrogen compound metabolic process 15 41 1
0006289 nucleotide-excision repair 20 46 1
0006397 mRNA processing 17 48 1
0007017 microtubule-based process 18 49 1
0070588 calcium ion transmembrane transport 10 36 1

Table 1: Number of genes most frequently annotated as false positives by the model
trained with topological measures.
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