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ABSTRACT

In this paper, we address the problem of sampling on
graphs for change detection in large multi-spectral (MS) and
synthetic aperture radar (SAR) images by proposing a graph-
based data-driven framework. The main steps of the proposed
approach are: (i) the segmentation of regions that enclose the
change; (ii) the use of smoothness prior for learning a graph of
the regions; (iii) the integration of blue-noise sampling (BN)
in the change detection scheme. We validate our approach
in 14 real cases of remote sensing according to quantitative
analyses. The results confirm that using a structured sam-
pling such as BN outperforms recent state-of-the-art methods
in change detection for multimodal data.

Index Terms— Blue-noise, change detection, data fu-
sion, graph, remote sensing images, sampling, smoothness.

1. INTRODUCTION

Change detection (CD) refers to the task of analyzing two or
more images acquired over the same area at different times
(i.e multitemporal images) to detect land-cover changes be-
tween acquisitions [1]. The most common sources are multi-
spectral (MS), and synthetic aperture radar (SAR) images (at
very high spatial and spectral resolutions), which describe an
object or phenomenon. Each sensor captures different infor-
mation that explains physical features. For example, a SAR
sensor captures information about the physical characteristics
of a surface (such as roughness, geometric structure, and ori-
entation), and a MS sensor captures reflectances at different
wavelengths from objects [2, 3].
In the last few years, a variety of approaches to CD, based on
thresholding, clustering, deep learning, and random Markov
fields [4–7], have been proposed. In this work, we focus
on graph-based methods due to their capability to handle
multimodal data, and the flexibility to represent relationships

between data entities [3, 8, 9]. In general, graph-based meth-
ods learn a graph from the observed data samples by using a
similarity matrix, i.e a Gaussian kernel to quantify the spa-
tial or radiometric proximity between data samples extracted
from remote sensing images. Once the graph is learned, the
eigenvectors and eigenvalues of the normalized graph Lapla-
cian are used to detect changes in the image. However, when
the number of samples is high, computing a complete simi-
larity matrix can be computationally expensive. To address
this problem, previous works have proposed sliding win-
dows [8] and Nyström extension (NE) based methods [2, 3].
The sliding windows methods [8] are local approaches that
do not take into account the non-local structure present in the
image, which may be useful to identify changes. In contrast,
NE based methods [2, 3] accounts for non-local structure but
overlooks the structural relationships among potential regions
of change in the scene. In addition, as it is shown in [10], NE
requires as input a set of samples, which highly impacts its
approximation capabilities.
Consequently, in this work, we propose to use blue-noise
sampling (BN) on a graph [11, 12], which encodes struc-
tural relationships of potential regions of change. Then the
structurally-aware samples produced by BN are fed into NE.
To learn the graph on which BN will be applied, we use graph
learning (GL) based on smoothness priors [9, 12, 13], and the
potential regions are defined using isoperimetric partition-
ing [14]. The proposed approach is tested on 14 real datasets
in CD and the results are compared with recent state-of-the-
art methods such as our previously proposed method based
on graphs US-2D [3], U-CD-HPT based on machine learn-
ing [8], and rrR based on probabilities distributions [4]. The
results show that by using sampling over graphs combined
with a GL method to infer the graph, the structural informa-
tion of the remote sensing image is exploited and outperforms
the previous results showed in [3].
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2. GRAPH BASED DATA FUSION FOR CHANGE
DETECTION

Remote sensing images contain pixels that reside on a reg-
ularly sampled 2D grid. Thus, images can be regarded as
a signal on a grid graph with edges that connect each pixel
in each band to its neighborhood of pixels. Since a graph
G = (V,E,W) is a nonlinear structural representation of
data, with a set of nodes V , and a set of edges E that ex-
plain the relationship among nodes weighted by the entries
of the adjacency matrix W. The weight wij associated with
the edge (i, j) ∈ E quantifies how strong the relationship
between the nodes i, j ∈ V is. The common measure used
for each weight is a Gaussian kernel (κG(.)) [3]: wi,j =

exp
(
−d(Vi,Vj)

2

σ2

)
, where d(Vi, Vj) is the distance between

two nodes and σ is the standard deviation of all d(Vi, Vj).
Given the high number of pixels in a remote sensing image
(e.g. an image with size 1280 × 960 is equivalent to N =
1228800), the matrix W ∈ RN×N can be computationally
prohibitive to construct. To address this problem, we use
the Nyström extension [15] to find an approximation of W,
by sampling ns points distributed across the image and re-
indexing the matrix W as:

W = κG

([
dAA dAB

dAB
> C

])
,

where κG is a Gaussian kernel, dAA ∈ Rns×ns repre-
sents the graph distances within the ns sample nodes, dAB ∈
Rns×(N−ns) are the distances between the ns sample nodes
and the remaining N − ns nodes, and C ∈ R(N−ns)×(N−ns)

are the distances within the unsampled nodes. This method
approximates the eigenvectors and eigenvalues of W by
choosing ns samples distributed across the image from the
dataset of size N (ns � N ) [2, 3]. In our context, an ap-
proximate adjacency matrix Ŵk

N is computed for each image
at time k, and a fusion step is then performed [3]. The fu-
sion step consists of capturing the unique information given
by each approximated graph into one fused graph (WF ) by
maximizing the distance between nodes (i.e. choosing those
pixels that preserve most of the information):

WF = min(ŵkNij
),with k = [1, 2],

where ŵkNij
represents the weight of the node for each in-

stance of time k. In this sense, the learning of this approach
is data-driven (uses a few ns samples to learn) and it will be
restarted from scratch for each dataset. To detect the change
we use the approximated eigenvectors and eigenvalues found
by NE from WF , as features to represent the change in the
images (for more detail see algorithm 1 in [3]). Being that,
the number of eigenvectors is equal to the number of samples
(ns) taken from an instance of time k, we build the change
map, by selecting the scaled eigenvector that maximizes the
mutual information (MI) [16] of this eigenvector with a bina-
rized prior signal. This prior signal comes from the normal-
ized differences between pre-event (Ibf ) and post-event (Iaf )

images, by using T the global threshold (Otsu) [3]:

Pb = T
(
Ibf − Iaf
Ibf + Iaf

)
+ T

(
Iaf − Ibf
Ibf + Iaf

)
(1)

3. BLUE-NOISE SAMPLING ON GRAPHS

We now describe briefly the problem of sampling on graphs
and the concept of BN on graphs.
Consider a graph G = (V,E,W), and let f ∈ R|V | be a
signal defined on G, that is f : V 7→ R can be considered a
scalar function of V , where the value of f at the vertex i ∈ V
is denoted by f(i) or fi. When the signal f defined on G is
known to be smooth with respect to the graph G, sampling on
graphs aims at the characterization of sampling sets S ⊂ V ,
with cardinality |S| = m, such that the signal f can be ex-
actly (or accurately) reconstructed from its values at S, that
is fS = (fi : i ∈ S)T ∈ Rm. There are many ways to find
a suitable sampling set S ⊂ V [12]. In this work, however,
we will focus only on a family of sampling sets, referred to as
blue-noise sampling sets , widely used in the context of digi-
tal half-toning [17], but recently extended to graphs by [11].
At a basic level, a BN set is a subset of vertices S of V , whose
elements are arranged in such a way that they are as far apart
as possible from each other in terms of geodesic distances on
G. As demonstrated in [11], these sampling sets lead to an ac-
curate reconstruction of signals whose energy is mostly con-
centrated at the lowest eigenvectors of the graph Laplacian of
G. This fact can be exploited in CD because in the approach
proposed in [3] we construct graphs in such a way that the
land-cover changes are detectable at the lowest eigenvectors.
We now elaborate on our approach to CD based on BN on
graphs and graph learning.

4. THE PROPOSED METHOD

Even though the aforementioned CD model compares favor-
ably with recent state-of-the-art methods, its performance de-
pends significantly on the accuracy of the NE to approximate
W [3]. So, as stated in the introduction, we will use BN to
enhance the NE approximation of the adjacency matrix. To
do so, we first partition the image to regions related to the
change by solving the isoperimetric problem, which is “to
find a boundary of minimum perimeter enclosing maximal
area” and the prior in equation 1 encloses the area related to
the tentative change and some outliers. In doing so, we use
the graph isoperimetric partitioning algorithm [14]. Once we
got the regions, we generate the nodes r ∈ Rnr (where nr is
the total number of regions) as the mean value of each region.
As a second step, we infer structural relationships among the
obtained regions using graph learning (GL) with a smooth-
ness prior [9, 13]. GL problem is to learn a graph topology as
learning the Laplacian matrix (L), such that the signal vari-
ation on the resulting graph (Q(L)), is small, that is “the
signal takes similar values at neighboring vertices” [9]. The
measure of smoothness of a signal x in a graph is given by
the scalar value: Q(L) = 1

2

∑
i,j wij(x(i) − x(j))2, where
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wij is the ijth entry of matrix W. This, on the one hand,
smooths out outlying nodes related to regions where there is
no change, and on the other hand, accentuates regions where
change takes place. In this work, we use the recent approach
in [13] to learn such a graph, where the authors leverage the
desired graph sparsity to reduce computation and automati-
cally select the parameters of the model. As in k-NN, the
number of neighbors K (edges per node) is an input, without
performing grid search over two parameters α and β. Then,
the minimization problem of [13] is:

min
W

∑
i

∑
jWijZij −

α
∑
i log(

∑
jWij) +

β
2 ‖W‖

2
F + c

2 ‖W −W0‖2F
s.t. Wij =Wji ≥ 0, i 6= j, diag(W ) = 0, (2)

where Z is a pairwise distances matrix, α is a log prior
constant (> α →> weights in W), β is a ‖W‖2F prior con-
stant (> β → less sparsity in W). Since matrix Z must con-
tain information from the pre-event and pos-event images, we
use the magnitude of difference image |Ibf − Iaf |, computed
for the mean value of the regions given by the graph parti-
tioning algorithm. As a final step, we run the BN algorithm
in [11] on the learned graph, and the BN samples are trans-
formed into the image domain by selecting as samples the
centroid of the regions associated with each of the vertices of
the graph. These samples are next entered into NE to detect
changes in the scene as shown in Figure 1.

Get binarized prior (𝑃𝑏) 

by using equation (1) 

and compute the graph 

isoperimetric algorithm 

in [16]

Use the mean value of 

the regions to generate 

the nodes (𝒓 ∈ ℝ 𝑛𝑟 ) 

𝑮 ∈ ℝ𝑛𝑟 × 𝑛𝑟

Learn the graph by 

using the 

smoothness prior in 

[9]

Nyström extension 

for algorithm 1 in [3]

Sampling pattern

Apply blue noise 

Sampling in [11]

𝒓 ∈ ℝ 𝑛𝑟

𝐼𝑎𝑓𝐼𝑏𝑓

𝑅𝑒𝑔𝑖𝑜𝑛𝑠 ∈ ℝ𝑛𝑟

Compute the

magnitude of the

difference image

|𝐼𝑎𝑓 − 𝐼𝑏𝑓|

Sampling in [3]

Fig. 1. Flow chart of the proposed method.

Figure 1 shows the flow chart of the proposed method.
Note that the sampling pattern (red dots) in the image capture
the structural information, as the lake and a city near the zone.
However, some of the samples are close among them, and one
may think that the BN is not providing well-separated nodes.
Nonetheless, the reason for this proximity is that the graph

and the image have different spaces (Image ∈ Rm×n and
G : Image 7→ RN×N , where N = m ∗ n). In contrast, the
uniformly spaced 2D grid sampling (dashed lines) does not
capture information given by the structure of the image.

5. EXPERIMENTAL RESULTS AND DISCUSSION

5.1. Databases
We tested our approach in 14 real change detection scenar-
ios captured by MS and SAR sensors presented in [3]. These
datasets include events such as earthquakes, floods, wildfires,
melted ice, farming, and building. In addition, these datasets
include 4 multi-modal datasets (Toulouse, California, Bas-
trop, Gloucester-2) which combine SAR/MS images. For a
more detailed description of the datasets please refer to [3].
5.2. Experimental set-up
We ran all the codes 1 in a server with 2 processors, Intel(R)
Xeon(R) CPU E5-2650 v4 @2.20GHz, a total of 24 physical
cores, 48 threads of processes, and 252 GB of RAM @2400
MHz. We compared the proposed method with our previ-
ous approach in [3]. We evaluated the change-detection map
generated with respect to the ground truth by using the well-
known Cohen’s kappa coefficient (κ): κ = po−pe

1−pe , where
po is the observed agreement between predictions and labels
(the overall accuracy), while pe is the probability of random
agreement.
The number of samples was set equal to the previous ap-
proach [3], the number of regions where set manually to
cover the most of areas in the prior (equation (1)), and the
number of neighbors (K) for the graph learning were set
through exhaustive grid search. For the regions we use the
graph analysis toolbox 2, for the graph learning we use the
GSPBOX 3, and for the BN we use the implementation in 4.
The final results are tabulated in Table 1, where in overall the
proposed method improves the results in 10 datasets out of 14.
Bastrop and Mulargia datasets present a small percentage of
improvement (≈ 1%) because the priors used for these cases
do not provide enough discrimination between change/no
change regions. However, for the remaining 8 datasets pro-
posed technique outperforms the competing state-of-the-art
techniques rrR [4] and U-CD-HPT [8] presented in [3]. It is
important to remark, that for the 4 multi-modal datasets the
proposed methodology presents better results in 3 (Toulouse,
Bastrop, and Gloucester-2) of them, which demonstrates the
effectiveness of the sampling method based on graphs and
the use of graph signal processing for graph learning. For the
remaining 3 datasets (Alaska, Wenchuan, and California) the
results are close to those reported in [3].

6. CONCLUSIONS

In this paper we introduced a graph-based sampling method
for change detection, which builds on recent state-of-the-

1Available at: github.com/DavidJimenezS
2Available at: leogrady.net/software/
3Available at: epfl-lts2.github.io/gspbox-html
4Available at: github.com/jhonygiraldo

2897

Authorized licensed use limited to: Pontificia Universidad Javeriana. Downloaded on February 08,2022 at 13:52:24 UTC from IEEE Xplore.  Restrictions apply. 



art graph signal processing tools, that is BN on graphs and
GL. Our main contribution is a graph-based framework for
sampling relevant nodes related to regions of remote sensing
images. Our method models an image as regions, learn a
graph by using smoothness prior over the regions, and apply
BN to select relevant nodes. Experimental results showed
that the proposed model outperformed recent state-of-the-art
methods based on graphs (US-2D) [3], based on machine
learning (U-CD-HPT) [8] , and based on probability (rrR) [4]
in 10 datasets out of 14 in terms of the metric κ. According
to the previous results and analysis, we conclude that the
proposed algorithm for graph sampling in remote sensing im-
ages is a promising and robust method for change detection
approaches based on graphs [3].
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Table 1. Performance of the approaches in terms of κκκ.
Dataset rrR [4] U-CD-HPT [8] US-2D [3] BN
Mulargia 0.7929 0.6984 0.9043 0.9096
Omodeo 0.8112 0.6414 0.2873 0.5903
Alaska 0.7368 0.8565 0.8917 0.8620
Madeirinha 0.6727 0.5048 0.8046 0.8618
Katios −0.1790 0.2882 0.3196 0.5285
Atlantico −0.0040 0.0970 0.4726 0.5936
San Franciso 0.1311 0.3143 0.4285 0.6720
Wenchuan 0.2380 −0.2730 0.3239 0.3158
Toulouse 0.1329 0.1200 0.1702 0.2670
Prince George 0.5322 0.4742 0.5442 0.7284
California −0.1430 0.3845 0.3507 0.3418
Gloucester-1 0.1724 0.5794 0.2286 0.6134
Bastrop 0.000 0.8884 0.8875 0.8887
Gloucester-2 0.1693 0.0080 0.1562 0.3583
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