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Abstract—The three-dimensional modeling of plants allows not
only the use of color information, as in conventional digital image
processing, but also the use of geometric information for the
morphological extraction of their features and the subsequent
analysis of their phenotype. The generation of point clouds is
one of the initial stages of this process, which is carried out
in different ways. One of the techniques used for this purpose
uses a rotating platform and laser sensors, which employ multiple
beams of light to illuminate the measurement area and determine
its depth with the principle of time of flight (ToF). However, the
algorithms used to perform the three-dimensional reconstruction
must be calibrated in a process that may include a large number
of experiments. For this reason, artificial three-dimensional point
clouds generated by simulators may be suitable, both for the
validation of reconstruction algorithms on those platforms and
for the analysis of plant phenotype characteristics under almost
realistic conditions. Thus, with this aim, this paper describes the
development of an open-source tool for the generation of artificial
3D plant point clouds, based on the simulation tool Gazebo
and the Robot Operating System (ROS). This work in progress
allows validating different reconstruction algorithms, as well as
the characteristics of LiDAR sensors and turntables to generate
3D models in an open file format. Our source implementation
is freely available online and can be obtained from https:
//github.com/HaroldMurcia/3D-plantModeling-with-2DLiDAR.

Index Terms—point cloud reconstruction, simulation of 3D
modeling, LiDAR, plant phenotyping, machine vision, robot
operating system

I. INTRODUCTION

Plant phenotyping allows the analysis of complex plant traits
like growth, architecture, physiology, yield, and some other
parameters which determine more complex features. Reliable,
automatic, and multifunctional phenotyping technologies are
considered relevant tools for the rapid advancement of genetic
gain in breeding programs [1]. Therefore, in the study of
plant phenomics, the measurement of the 3D morphology of
a plant plays an important role [2]. Improving the efficiency
of phenotyping processes has become an important task for
plant breeding programs [3], [4]. However, plant breeding can
be a time-consuming and resource-intensive process; and in
turn, the efficient use of those resources may be critical for
the final results [5]. Nowadays many researchers use computer
vision techniques combined with non-invasive sensors to study
the phenotype of plants. These applications use different types
of sensors to acquire multidimensional phenotypical data,
such as red, green and blue cameras (RGB), RGB depth
cameras (RGB-D), stereoscopic vision, structure light sensors,
light detection and ranging devices (LiDAR), among others.

Among these options LiDAR technology has increased its
popularity among experts in different areas, so they are widely
used for three-dimensional data acquisition [1], [6]. LiDAR
is a remote sensing technology which measures the distance
to an object by illuminating the target with laser and then
analyzing the reflected light. LiDAR sensor employ a direct
ranging measurement, determining the time-of-flight (ToF) of
a light pulse, by measuring the elapsed time between the
emitted and received beam to calculate the correct distances
between objects. A 2D LiDAR device includes a rotating
mirror that directs the emitted light beam depending on its
angular position to obtain different range measurements of a
scanned scene plane. For a 3D LiDAR, the idea is the same,
but several laser beams spread out on the vertical axe are shot
to get data on X, Y and Z axes. Each laser beam will have an
angle delta with the other beams. However 3D LiDAR devices
are expensive in comparison with general sensors and offers
only a view of the scanned object, so as well as 2D sensors, a
synchronization of different measurements is needed to have
a full reconstruction.

Given the growing interest in generating 3D models of
plants for study, both in field and laboratory applications,
different hardware and software developments have emerged
for their generation and further processing [7], [8]. However,
the harmony of the elements involved in the reconstruction
algorithms, together with the need to generate artificial
models that speed up information processing studies, make
it necessary to propose simulation tools that allow testing
the different reconstruction algorithms in a 360° scan. At
the same time, it makes possible to generate complete point
clouds that bring together real models for the corresponding
morphological analyses. Computer simulation is one of these
possibilities, its essence is to sample as many conditions
as possible that can be found in practice for any field,
is fast and uses few physical resources, which makes it
easily compliant with plant breeding. A virtual plant is a
resource based on real structural and morphological data of
plants. This computational approach brings a more intuitive
data simulation of plants because allows generating more
realistic 3D models in 360°. A 3D plant model is especially
useful for research in phenotyping for plant breeding.
Computer simulation can integrate physiological crop
models, environmental information, and genetic composition
of different crops to fill the gap between genotype and
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phenotype. Thus, plant breeding simulation platforms are
becoming powerful tools to simulate the plant breeding
process [5]. Understanding the biological processes involved
in the development and functioning of plants requires
efficiently using and combining computer models or methods
from different scientific fields. Since these models are
developed using different programming languages, different
degrees of modularity, and operability, little attention is
paid to code reuse and dissemination, such as packaging,
installation procedures, portability to other operating systems,
etc. This makes it difficult to exchange, combine or reuse
models and simulation tools. The choice of programming
language and the simulation environment also has important
implications. Many modeling frameworks choose to utilize
more efficient and flexible languages such as C++. To improve
ease of use, many other developments adopts programming
languages such as Python or Java [9], [10]. In this way, it
is important to consider multilingual platforms that support
developments from different programming possibilities. The
Robot Operating System (ROS) is a middleware that is being
highly adopted by many robotics platforms, and the proposed
3D plant modeling framework is suitable for mobile robots
within agriculture tasks. In addition, ROS is compatible with
3D simulation environments as Gazebo, a simulation backend
very widely used for robotic applications. It has a collection
of tools and libraries to simplify the task of creating complex
and robust robotic behavior across a wide variety of robotic
platforms.

In this paper, an open-source tool for the simulation of the
acquisition and generation process of three-dimensional plant
point clouds is presented. A Gabezo environment (world) in
which a low-cost 2D LiDAR sensor can be simulated was
developed. Besides, a Gazebo plugin with ROS was created
to interact with a simulated rotating platform, control the
properties of the sensor and the reconstruction algorithm. A 3D
point cloud database was created from a group of predefined
virtual plants and the error between several measurements on
these and the 3D models were calculated.

II. RELATED WORKS

The analysis of the digital representation of individual
plants in three dimensions, in combination with detection
technologies such as visible images and laser sensors in
simulated environments, is a way to determine the topology of
the plants, quantify the geometry and simultaneously evaluate
their impact on plant phenotyping. In [9] was presented an
open-source platform, called OpenAlea, that provided a user-
friendly environment for modelers, and advanced deployment
methods. OpenAlea allowed researchers to build models using
a visual programming interface and provided a set of tools ded-
icated to the modeling of plants. In [10] was developed a three-
dimensional plant and environmental modeling framework
called Helios, which is a model coupling framework designed
to provide maximum flexibility in integrating and running
arbitrary 3D environmental system models. Helios comes with

model plug-ins for radiation transport, photosynthesis, solar
position, procedural tree generation, among others. Additional
plug-ins are also available for visualizing model geometry
and data and for processing and integrating LiDAR scan-
ning data. In [11] some experiments in the 3D simulation
environment Gazebo were carried out, with artificial maize
plants in laboratory and on a small maize field, using the FX6
LIDAR by Nippon Signal. By using an algorithm based on an
approach detecting the ground to segment the point cloud into
the soil and other objects, an agricultural robot was able to
detect reliably single plants in crop rows in real time. In [12]
integrated hardware and software tools were developed in a
project called PlantScan to provide automated, non-invasive
analysis of plant structure and morphology. It provided an
automatic digitalization of plants in three dimensions, enabling
plant scientists to better understand the complex interactions
involved in plant growth. In [2] a LiDAR-based device and
a rotational stage to provide continuous rotation at 360° was
developed, generating 3D point clouds for phenotyping of corn
and sorghum plants. An LMS 511 SICK AG LiDAR module
was selected for instrument development. The rotational speed
was maintained at 3°/s. The LiDAR module and the rota-
tional stage were controlled and synchronized in a program
developed in LabVIEW. They established an algorithm that
processed point clouds in four stages: background removal and
voxelization, clustering and segmentation, triangulation and
surface adjustment, and extraction of morphological features.
Four plant morphological traits were extracted: individual leaf
area, total leaf area, leaf inclination angle, and leaf angular
distribution. The technique was validated with a leaf area
measuring instrument on a group of 20 plants (10 maize’s
and 10 sorghum’s) in various vegetative stages starting at six
weeks of age. Point clouds processing was carried out in
Matlab v2016 and the precision of the method was evaluated
by calculating the coefficient R2 and the mean absolute error
(MAE) showing highly correlated data.

III. MATERIALS AND METHODS

Our system was inspired in a configuration which combines
a 2D LiDAR, a DC motor, a motor driver, a rotating platform,
an angular measurement or estimation subsystem, and a com-
puter with a ROS environment as shown in Figure 1. For the
simulation environment, the electronic components and me-
chanical references of the platform were irrelevant. Software
process started reading the sensors signals to conditioning the
information and to apply the kinematic transformation to a
frame reference. This process was repeated for each angular
position of the motor depending on the resolution and speed
of rotation.

As a first step in this development, a 3D CAD model of the
reference system was made using Solidworks 2017 software.
Then, it was required to migrate each of the pieces modeled
in Solidwork to Gazebo simulator [13]. This modeling was
condensed into URDF and SDF files, which were written in
XML code. In these files, variables such as lighting, obstacles,
terrain, friction between the robot and the environment, the



Fig. 1: Reference configuration for the simulation system

force needed to move the robot, etc. can be detailed. It also
must be specified the joins and plugins that should interact.
This model specifies the parts of the robot or links, the unions
that exist between each link, and the plugin or complement
that is necessary. Each link had a name that identifies it, as
well as the definition of the area, figure or point with which
it will be in contact with the other parts of the system and the
world in which it is simulated. Additionally, a visual part was
defined which is what the developer will be able to see in the
simulator. Likewise, the links and plugins that must interact
were specified. In this model, the parts of the robot or the
links, the connections between each link and the plugin or
complement that are necessary were specified. A C++ plug-in
was then created to allow the system to perform different
actions such as movement, rotation, data capture through
sensors, among others. This plug-in sent a position expressed
in radians to the platform. The movement was controlled
by a PID, while the angle of the platform was published.
A second plugin performed the sensor function, which was
connected to a laser sensor link emitting the laser distances
and thus simulating the LiDAR sensor. Sensor parameters
such as minimum and maximum distance, resolution, and
beam angle must be configured within the SDF model before
launching the world. Finally, the system was linked to ROS
to be able to use the created plugins and assign tasks to the
system. The control of the platform was carried out through
a code in Python. For this, a node and some topics were
created, which were in charge of receiving and publishing the
angle that the platform should move and the current angle
respectively. Figure 2 summarizes the simulation process in a
flowchart involving the Gazebo simulator, the plugins and the
main program. A Gazebo world launcher was created to build
this system and communicate its simulation environment,
allowing to carry out a command to start ROS and Gazebo.
The world in the simulator will have the system model, which
is the rotating platform, and physical characteristics of both
the robot and its environment.

Once the 3D model of the system and the simulation
parameters of the world were configured in Gazebo, a node
was developed in Python to manage the movements of the
engine, the reading of the sensors, the conditioning of the
data and its respective storage. The movements are set in steps,

Fig. 2: Process flow diagram

whose values in degrees depends on the resolution with which
the simulation is configured. The reading refers to the angular
position estimated from the initial position, and the steps are
measured by an encoder. On the other hand, the reading of the
LiDAR sensor is done through the ”scan” topic, which has a
message format ”LaserScan”. The data conditioning, which is
the previous step to the storage, extracts the estimated value of
the rotation from the initial angle and the measured angle. The
range data, shown in meters, and the angle of measurement
of the lidar, were transformed into a cloud of XYZ points. As
shown in Figure 3, in this model the platform (P2) had as its
origin a Cartesian coordinate system different from the LiDAR
sensor, so it was necessary to apply a translation matrix to
work in a coordinate system where the LiDAR would be in the
point P2. The conditioning of the data into a single frame of
reference can be done employing a matrix equation, in which
transformation matrices between translations and rotations are
included, as specified in a previous work [14].

The proposed Kinematic model aims to transform all the
data obtained into a reference framework centered on point
P2. In a general representation, the transformation matrices
were based on a basic point transformation for a 3D space.
The measurements obtained from the LiDAR were converted
into XY Z Cartesian coordinates as X = ranges ∗ cos(α),
Y = ranges ∗ sin(α) and Z a nule vector with size [Nx1],
where α is the LiDAR angle and N is the number of voxels
per laser scan. So, the parameters tx, ty and tz shown in (1)
represents the respective translations from point P1 to point
P2 along X,Y, Z axes. T is then, the translation matrix.



Fig. 3: Schematic diagram and notations for the reconstruction
system based on rigid transformations from LiDAR raw data
to a reference point

T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 (1)

Rz is the rotation matrix around the Z axis, which is a
function of the radial distance γ, as shown in (2).

Rz =


cos(γ) −sin(γ) 0 0
sin(γ) cos(γ) 1 0

0 1 0 0
0 0 0 1

 (2)

The resulting 3D reconstruction is a three-frame transfor-
mation based on previous matrices, as shown in (3).
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
(3)

where γ represents the rotated angle for the moment t = 0
with respect to the initial position. The transformation pre-
sented in (3) was applied for each movement from the initial
state to the last position. Finally, a flat file in TXT format is
created with the transformed data in a X,Y,Z structure; which
can be easily transformed to other formats such as LAS, PCD
or PLY by using additional software such as: CloudCompare,
Laspy for Python, LasTools, etc. The tool was developed in
ROS Melodic, Gazebo 9 and Python 2.7. The simulations were
executed on a computer with Intel CORE i5 7th Gen 2.5 GHz
with 8 GB of RAM, under Ubuntu 18.04 operating system.
Simulation time expend a couple of minutes according to the
maximum angle and step resolution. The simulated sensor
has the characteristics of a low-cost device, Hokuyo URG-
04LX-UG01 2D LiDAR with a scanning angle of 240° and
in 0.36° resolution steps. Laser parameters such as maximum
distance, minimum distance, opening angle and resolution can
be changed by configuring the platform.world file, in the

section of the platform model, subsection <link> camera, in
the parameter <laser sensor>.

IV. RESULTS

Figure 4 shows two open access plant models with a STL
file integrated in a SDF format [15]: a wheat plant and a
maize plant; which were used into the simulated platform.
Both plants were scanned with a resolution of 1 degree along
the 360 degrees.

(a) (b)

Fig. 4: Simulated platform in Gazebo with plants: (a) wheat
virtual plant, (b) maize virtual plant

The 3D point clouds obtained in the Gazebo simulation
environment were saved in LAS format and displayed together
with the predefined virtual plant models in the CloudCompare
software. The whole acquisition process took about 40 min-
utes. Figure 5 details the measurements done in the virtual
plants to estimate the error of three parameters in each model,
called A, B, and C, which correspond to longitudinal mea-
surements of each model. The error was calculated according
to (4), where S is the measurement made in CloudCompare
on the point cloud generated by simulation and R is the
measurement on the virtual plant, taken as reference.

(a) (b)

Fig. 5: Plant models: (a) wheat virtual plant, (b) maize virtual
plant

error[%] =

∣∣∣∣S −R

R

∣∣∣∣ (4)



Figure 6 shows a frontal view of the resulting 3D point cloud
after simulation of acquisition with the wheat virtual plant.
From this 3D reconstruction were extracted the height of the
plant, an individual stem diameter, and the distance between
stems. In Figure 7 can be seen the 3D point cloud obtained
using the maize virtual plant as the target for the simulation
process. From this 3D reconstruction were extracted the height
of the plant, the stem diameter, and leaf width. Tables I and II
show all measurements for each point cloud and the calculated
error for 1 degree and 0.5 degree steps respectively.

(a) (b)

Fig. 6: Reconstructed 3D wheat plant point cloud with 1 degree
steps: (a) frontal view, (b) frontal view using a color scale
based on altitude

(a) (b)

Fig. 7: Reconstructed 3D maize plant point cloud with 1 degree
steps: (a) frontal view, (b) frontal view using a color scale
based on altitude

TABLE I: Error determination from the simulated and virtual
point cloud measurements for the wheat plant with 1 degree
steps

Parameter Simulated [mm] Ref. value [mm] Error [%]
Resolution: 1 degree steps

A 5.00 4.00 25.00
B 47.00 42.00 11.90
C 442.00 555.00 20.36

Resolution: 0.5 degree steps
A 4.20 4.00 5.00
B 42.0 42.00 0.00
C 490.0 555.00 11.71

TABLE II: Error determination from the simulated and virtual
point cloud measurements for the maize plant with 1 degree
steps

Parameter Simulated [mm] Ref. value [mm] Error [%]
Resolution: 1 degree steps

A 411.00 417.00 1.43
B 12.00 12.50 4.00
C 15.78 18.60 15.15

Resolution: 0.5 degree steps
A 412.69 417.00 1.03
B 12.00 12.50 4.00
C 16.00 18.60 13.97

According to the results from Tables I and II, both recon-
struction processes had similar accuracy. In both Tables it is
evident that the values obtained with the point cloud from the
simulation were mostly lower than those obtained with the
virtual plant. In the same way, it is evident that the general
error decreases as the resolution of the steps on the platform
improves. A factor that might influenced the mayor error in
some results was the simulation process, which required the
use of a large number of computational resources, so it would
be affected by the performance of the equipment used.

V. CONCLUSIONS

This paper describes the development of a software tool
to simulate the 3D plant modeling process in a ROS-Gazebo
Framework. This simulation can be used as a base work
for simulating other objects and trying new reconstruction
configurations and algorithms. It can also be used to generate
artificial point clouds at different resolutions for plant pheno-
typing applications. All code from this project is free to use,
distribute, and modify.

The approach carried out, under a computer simulation
environment, brings an approximation to real scenarios in
reconstruction systems, but since there is a gap between our
knowledge and actual plant phenotyping practices, a huge
amount of information would be needed to emulate an accurate
3D plant point cloud reconstruction process. In a real situation,
plants can move due to airflows, occlusions are more common,
and lighting conditions must be managed too. So, we need
more innovative tools to help us integrate the knowledge
we have gained on plant morphology analysis during years
into plant-phenotyping practices that make us address those
problems and accelerate plant improvement programs.



Future work would involve to build plugins for simulating
laser intensity and pulse width information, the option of val-
idation algorithms for kinematic model tuning and automatic
parameter estimations, as well as migrate the simulation to a
real scanning platform.
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