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Abstract—Plant architecture is defined as the three-
dimensional modeling of the plant’s morphology for extracting
relevant phenological traits. Most applications rely on expen-
sive high-density LiDAR devices for enabling high-throughput
mapping. In this paper, we explore the use of low-cost LiDAR
equipment by using a sensor fusion approach. The proposed
method is based on the fusion of LiDAR-acquired low resolution
3D point cloud data with high resolution 2D imagery. We use
an extrinsic calibration method that requires oversampling to
enhance the data fusion from both sensors. As a result, we
increased the resolution of the output 3D model of the plant.

Index Terms—plant architecture, LiDAR, sensor fusion, RGB
imagery, plant phenotyping.

I. INTRODUCTION

Plant phenotyping requires the use of high resolution sen-
sors to characterize specific traits for plant breeding or the
remote monitoring of the crop [7]. In this regard, defining
three-dimensional (3D) models for plant morphology has re-
cently enabled new approaches for understanding how genome
features are associated with plant traits, e.g, leaf area and angle
for chlorophyll absorption and nitrogen status, plant height for
biomass production, among other geometrical variables [8],
[3].

Most works rely on high-density LiDAR devices, stereo-
scopic camera arrays [12], [4], [21] or time-of-flight cameras
[22], [5], [26], [9], [23] in order to capture 3D plant data [25].
Although these sensors enable high resolution 3D models of
the plant structure, the high costs and size of these sensors
limit in-field sensing. Here, we propose the use of low-cost
small sensors that can operate directly in the field. Our goal
is to explore simple sensor fusion algorithms that allow for
real-time plant 3D modeling. Given that, we propose the use
of a low-density Light Detection and Ranging (LiDAR) device
and a high-resolution multispectral camera for acquiring 3D
point cloud data of the plants that are combined with RGB/NIR
pixels from the 2D imagery. A data fusion approach is applied
for the 3D reconstruction, allowing for a non-destructive
phenotyping system.

An important body of work from the specialized literature
reports the use of digital plant models for the extraction of
vegetation indices [24], [14], [10], which enable the character-
ization of sunlight absorption by calculating plant reflectances
at different wavelengths [19], [2], [6]. In [1] and [13], a 4D
plant modeling approach is proposed, where the 3D morpho-
logical data is mapped with each spectral band independently,

with the aim of re-constructing the spatial information of the
vegetation indices based on the geometry of the plant [17].

In order to generate a comprehensive digital model from
the data fusion between 2D images and 3D data, several
algorithms have been proposed, such as: perspective projec-
tions [11], Gaussian regressions [20], mutual information [18],
and sensor extrinsic calibration methods [15], [16]. Here, we
apply an extrinsic calibration method to determine a projection
matrix that allows for the alignment between the 3D points
generated by the LiDAR and the pixels generated by the RGB
camera. Subsequently, an interpolation algorithm is applied for
the data fusion.

The rest of the document is organized as follows: Section II
details on the proposed mechanism for calibration and inter-
polation, Section III shows the experimental results and the
corresponding analysis, and finally, Section IV concludes the
paper and presents our future work.

II. PROPOSED MECHANISMS AND SETUP

An architectural representation of our proposal is shown
in Figure 1. In our approach to implement a fusion between
LiDAR data and RGB images, an extrinsic calibration method
is required, which is composed by three main components: (i)
The usage of a diamond-shaped calibration board and finding
the board’s vertices (key-points) in the image generated by
the camera and in the point cloud generated by the LiDAR.
(ii) The implementation of a Random Sample Consensus
(RANSAC) algorithm to find a plane that fits the sensed
3D points and projects them into the found plane. (iii) The
application of a least squares regression method for finding
the projection matrix that allows the alignment of the sensor’s
data.

The implemented calibration pattern consists in a diamond
shaped cardboard with one black half and another white half,
as it can be seen in Figure 2. Subsequently, in order to find
the key-points of the calibration pattern in the 2D image, a
Harris corner detector is used.

In order to select the 3D key-points, a plane P that satisfies
as many 3D points as possible using the RANSAC algorithm
must be estimated. Once the plane P is obtained, the 3D
points have to be projected onto the plane. This additional step
is required since non-uniform depth measurements are being
obtained on this flat object, due to the low precision of the used
LiDAR. As seen in Figure 3, by finding the plane that passes
through the greatest number of points and projecting them onto
that plane, we reduce the deviation due to the sensor’s error.
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Figure 1: General diagram of the proposed fusion mechanism.

Figure 2: Diamond shaped calibration pattern.

Once the plane that passes through the majority of 3D points
has been found, the point cloud is filtered only leaving the
points that are at the ends of each laser in the LiDAR, which
belong to the edge of the calibration pattern. Now, having those
edge points and using the RANSAC algorithm again but only
including the (x, z) coordinates of the points, a line that passes
through the greatest number of points for each edge of the
data is found, and with the intersection of the lines the (x, z)
coordinates of the key-points are found (see Figure 4). Finally,
those key-points are projected on the P plane for estimating

Figure 3: Measured vs projected points on plane P for the
calibration pattern.

the values of their y-axes, thus obtaining the key points.

Figure 4: Edge estimation for key-point detection.

The method for aligning a 3D LiDAR point with its
correspondent image pixel consists of using a least-squares
regression for calculating the projection matrix, which is
formulated as follows: u
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where fu and fv are the effective focal lengths, (u0, v0) is the
center point of the image plane, and R and t are the rotation
and the translation matrices.
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In this project we are utilizing the 16-channel Velodyne
VLP-16 LiDAR, which generates data with very low vertical
resolution, with big areas that have no mapped points, as
seen in Figure 3. For this reason, it is necessary to use an
interpolation algorithm estimate the missing points in these
areas.

Algorithm 1: Interpolation Algorithm
x-axis: horizontal axis.
z-axis: vertical axis.
y-axis: depth axis.

input : A Point Cloud Data pcd of size m× 4
input : A RGB image img
output: A denser Point Cloud Data of size m× 4
Sort pcd by channels;
Sort pcd from lowest to highest X value;
prPoint← None;
channels← 16;
interpPcd← [];
Y Threshold← threshold for maximum Y distance between

interpolated point and its adjacent points;
for i← 1 to chanels do

aChannel← channels− i;
aPcd← filter pcd by aChannel;
nChannel← channels− 1− i;
nPcd← filter pcd by nChannel;
lenAPcd← len of aPcd;
for r ← 0 to lenAPcd do

if (prPoint is None) then
prPoint←3D point of aPcd in r row ;

else
aPoint← aPcd[r];
val2f ← aPoint[′X′]+prPoint[′X′]

2
;

nCPoint←close 3D point to val2f in nPcd;
iPPoint← center of gravity value of the

triangle formed by the (X,Z) values of
prPoint, aPoint, nCPoint, Figure 5 ;

plane← plane that fit in prPoint, aPoint,
nCPoint, Figure 6;

iPPoint[′Y ′]← projected Y value of iPPoint
in plane;

HSV ColorIpP ← get the HSV color that
iPPoint point has in the img image;

if (HSV ColorIpP is in color segmentation
defined by the color of prPoint, aPoint,
nCPoint) then

YMean← mean Y value between
prPoint, aPoint, nCPoint;

diff ← 100− iPPoint[′Y ′]×100
Y Mean

|;
if (diff ≤ Y Threshold) then

interpPcd←append iPPoint to
interpPcd;

else
else
end

end
end

end
pcd←append interpPcd to pcd;

For this purpose, we select three different 3D points to form
a triangle and estimate the plane that passes through these
three points (see Figure 5). Then, the center of the triangle
is calculated and projected on the plane to obtain its depth
(see Figure 6). To determine if this new estimated point is
valid, thresholds are used in the estimated depth and the color
corresponding to that point in the RGB image. The pseudocode

of this interpolation is presented in Algorithm 1.

Figure 5: Center of gravity of the triangle formed between the
points A,B,C.

Figure 6: Projection of the gravity center point onto the plane.

III. EXPERIMENTAL RESULTS AND ANALYSIS

This section provides a detailed description of how the
experiments were carried out and the results obtained. We will
present the details on the imagery fusion scheme, the process
and results of implementing the interpolation algorithm, and
finally, a surface reconstruction comparison using a point cloud
with or without interpolation.

A. Imagery Fusion

For the extrinsic calibration of the LiDAR with the camera
for achieving the imagery fusion, the diamond shaped calibra-
tion pattern (see Figure 2) was used, taking RGB images and
point clouds of the calibration board for different distances and
angles. Then, using the Harris corner detector, the key points
were found on each of the 2D images, as seen in Figure 7.

To find these key-points in a 3D space, the point cloud
was filtered so that only the points belonging to the board
remained. Then, by applying the aforementioned technique to
detect the vertices of the calibration pattern, the 3D key points
were extracted (see Figure 8). Since the calibration matrix that
we want to obtain through the least square regression has 12
unknowns, it is important to highlight that at least 12 key-
points are required.
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Figure 7: Key-points detection in the RGB image of the
calibration pattern.

Figure 8: Key-points (P1, P2, P3, P4) mapped in a 3D point
cloud.

The result of the calibration can be seen in Figure 9, where
each 3D point was mapped to a pixel of the 2D image, thus
giving color to the point cloud according to the 2D image.

B. Interpolation and Oversampling

As it is shown in Figure 10, a fern was used as a test object
to carry out the tests. This plant has an irregular surface and
shape which makes it ideal for assessing the performance of
the surface reconstruction algorithm to generate its shape.

The point cloud obtained by sensing the test object can be
seen in Figure 11a. The undetected areas are due to the LiDAR
low vertical resolution. By means of oversampling and apply-
ing the interpolation algorithm to the point cloud, a denser
point cloud can be acquired. Because of the interpolation
algorithm, the point cloud now integrates more information,
filling the gaps of the sensor’s dead zones (see Figure 11a).

C. Surface Reconstruction

To qualitatively analyse how the surface reconstruction is
affected by the areas without LiDAR detection, a surface
reconstruction mechanism was implemented on the point cloud

Figure 9: Cloud point colored as result of the calibration
process.

Figure 10: A fern, the test object for these experiments.

without interpolation, with interpolation, and with interpola-
tion and oversampling, varying the alpha parameter in each test
(see Figure 11b). The alpha parameter indicates the distance
between each 3D point to triangulate the mesh generation.

As seen in Figure 11b, due to the low vertical resolution
of the LiDAR, there are areas of the object that were not
reconstructed, even when varying the alpha parameter. By ap-
plying the surface reconstruction algorithm to the oversampled
interpolated point cloud, those areas that previously could not
be reconstructed can now be successfully generated.

IV. CONCLUSIONS AND FUTURE WORK

The combination of data oversampling with the proposed
interpolation method improved the resultant 3D model based
on the data fusion between low-density LiDAR data points
with high-resolution 2D imagery, as demonstrated in the
results reported in Figure 11. The accuracy of the computed
3D models seems to properly match the geometrical properties
of the testbed plant, as depicted in both plots (a) and (b) from
Figure 11. Upcoming work is oriented towards the definition
of a ground-truth model for the testbed, that enables the
evaluation of performance metrics for the reconstructed 3D
model. In addition, other spectral bands of the multispectral
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(a) Point cloud data comparison.

(b) Surface reconstruction comparison.

Figure 11: Comparison of result of the interpolation method for the point cloud data and the surface reconstruction.

camera will be considered within the data fusion process,
with the aim of calculating volumetric vegetation indices that
indicate the plant health status.
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