In Silico Design of Ligands for the Detection
of Sucrose at Ultra Lower Concentrations in
Physiological Condition

Gustavo Adolfo Lara-Cruz and Andrés Jaramillo-Botero
Graduate Student of Engineering and Applied Sciences

Omicas - Project 2 - Nanosensors

Faculty of Engineering and Sciences

Pontificia Universidad ¢ i
JAVERIANA OMICA)

Cali




Table of contents

Introduction

Introduction



Introduction Sucrose

omicay’

Sucrose
» Mechanism for carbon
fixation in the trophic chain
HO—
HO
—O0
OH
OH -0
OH 0 OH
OH OH

a-D-glucopyranoside-(1—2)-8-D-Fructofuranosyl
Sucrose
Table sugar



Introduction Sucrose

Sucrose
» Mechanism for carbon
fixation in the trophic chain
HO— » Stable molecule for energy
storage (non-reducing sugar)
I HO
© OHg
OH -~
OH 0 OH
OH OH
a-D-glucopyranoside-(1—2)-8-D-Fructofuranosyl
Sucrose

Table sugar



Introduction Sucrose

Sucrose

» Mechanism for carbon
fixation in the trophic chain

HO » Stable molecule for energy
storage (non-reducing sugar)

| o HO
OHp » Plant growth and

development regulator
(Phytohormone)
OH 0 OH

OH OH

a-D-glucopyranoside-(1—2)-8-D-Fructofuranosyl
Sucrose

Table sugar



Introduction Sucrose

Sucrose
HO—
HO
I
OH
OH /O
OH 0 OH
OH OH

a-D-glucopyranoside-(1—2)-8-D-Fructofuranosyl
Sucrose
Table sugar

>

Mechanism for carbon
fixation in the trophic chain

Stable molecule for energy
storage (non-reducing sugar)
Plant growth and
development regulator
(Phytohormone)

Precursor for the synthesis of
structural molecules,
phytohormones, among
others



Introduction Sucrose

Sucrose

» Mechanism for carbon
fixation in the trophic chain
HO— » Stable molecule for energy
storage (non-reducing sugar)

| o HO
OHp » Plant growth and

development regulator
(Phytohormone)

OH O OH » Precursor for the synthesis of
OH OH structural molecules,
phytohormones, among

a-D-glucopyranoside-(1—2)-8-D-Fructofuranosyl others

Sucrose

Table sugar » Principal agroindustrial

commodity in the geographic
valley of Cauca river



Introduction  Biosynthesis

Sucrose biosynthesis
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Simplified model of carbon flux and signaling for photosynthesis, transport and
hydrolysis of sugars in photosynthetic cells during the day.

Rolland, F. et al. Annu. Rev. Plant. Biol. 2006, 57, 675-709.
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Sucrose metabolism

6 CO, + 6 H,0

Cellulose
synthase
complex

Simplified representation of sugar metabolism in non-photosynthetic tissue cells.

Stein, O. and Granot, D. Front. Plant. Sci. 2019, 10, 95.
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Sucrose metabolism
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Hallford, N. G. et al. Annals of Applied Biology. 2011, 158, 1-25
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Chemical composition inside a cell

Motivation

Table 2-2 The Approximate Chemical Composition of a Bacterial Cell

Water

Inorganicions

Sugars and precursors
Amino acids and precursors
Nucleotides and precursors
Fatty acids and precursors
Other small molecules

Macromolecules (proteins,
nucleic acids, and
polysaccharides)

70
1
1
0.4
0.4

0.2
26

Cooper, G., The Cell: A Molecular Approach; Sinauer Associates Inc 2000; 2nd Edicién.

1
20
250
100
100
50

~3000
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Sucrose detection

l Conventional detection techniques
drawbacks:

» Tissue destruction

» Loss of other analytes of interest

» Destruction of the plant

» Sample pretreatment and processing

» Expensive (robust) detection
equipment

Highly solvated system
Analyte in vivo detection
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Sensors for in vivo detection

Characteristics:

Easily implantable and removable

Reversible response

High sensitivity and selectivity

Biocompatible and biodegradable

Homeostatic balance

Works under phisiological conditions (pH ~ 7.0; T ~ 298.15 K)

Low molecular weight
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In vivo detection of sucrose

Lectins

Characteristics:

o i » Interacts with carbohydrates
through hydrogen bonds, CH-7
bonds, and electrostatic interactions

» Multiple interactions with sugars,
especially polysaccharides (~7
kcal /mol)

» High biocompatibility

» Low binding energies, selectivity and
affinity (Kp ~ mM) for mono and
dissaccharides

» Template selection

Tomassone, S. et al. Chem. Soc Rev. 2019, 48, 5488-5505.
13



In vivo detection of sucrose

Aptamers

| 4
incubation with
oligonucleotide pool

immobilisation of glycan sequences targeting
with random orientation multiple epitopes >

incubation with
oligonucleotide pool

immobilisation of glycan more conserved sequences
with directed orientation targeting one particular epitope

6mlcg@

Characteristics:

Non-covalent interactions; primarily
by hydrogen bonding

Single strand synthetic
oligonucleotides < 100 bases

In carbohydrates with electric
charge, Kp ~ 1.35 nM have been
reported

The absence of aromatic rings and
groups with a net charge limits
non-covalent interactions

Modification with boronic acids
improves selectivity to simple sugars

Tomassone, S. et al. Chem. Soc Rev. 2019, 48, 5488-5505.
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In vivo detection of sucrose

Phenylboronic acid
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Characteristics:

>

>

Covalent bonds to diols groups at
the 1,2 and 1,3 positions.

Reversible reaction and binding
energy pH-dependent

Versatility for integration into
different sensing platforms
(polymers, nanotubes, aptamers,
nanoparticles)

Controlling the orientation of the
boronic groups improves the
selectivity of the saccharide; low
molecular weight

Binding constants in the range of
mM-pM

Binding energy improves at pH > 7.0

Tomassone, S. et al. Chem. Soc Rev. 2019, 48, 5488-5505.
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Phenylboronic acid in aqueous solvent
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» The equilibria are shifted towards the anionic form

» The acidity of boronic acid increases after the formation of the boron diester
cycle (Ka’ > Ka)

» The reaction kinetics of the borate anion is greater than the kinetics of
neutral boronic acid (Kgey > Kirig)

» sp® hybridization reduces cyclic diester strain relative to sp? hybridization

Rowan, A. et al. Boronic Acids in Saccharide Recognition, RSC 2006.
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Phenylboronic acid in aqueous media
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31 m-nitrophenylboronic acid 16 phenylboronic acid 15boricacid 32 methylboronic acid
pK, 6.96 pK, 8.72 pKa, 8.98 pKa 10.40
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Phenylboronic acid in aqueous media
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31 m-nitrophenylboronic acid 16 phenylboronicacid 15 boricacid 32 methylboronic acid
pKa 6.96 pKa 8.72 pKa 8.98 pKa 10.40

» If pH > pKa, the binding constant of phenylboronic acid increases by
fivefold.

» The stability of the boronic diester complex increases with the acidity of the
ligand and boronic acid.

Rowan, A. et al. Boronic Acids in Saccharide Recognition, RSC 2006.
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Design of nanosensors with phenylboronic acids

Sucrose conformers

Table 2 Relative energy (kcal mol™!) for the main conformations of D-

OH Sucrose and dif erent conformations of S1 regarding the dihedral angle
w, OH wy at dif erent theory levels
@ b
Entry  Conformer MO6-2X Mp2
ABvac.  AEwa: ABEvac.  AEwa:
1 Slgttggg 0.58 0.00 0.25 0.00
2 S2gigt-gg 7.16 179 814 229
3 S3gitggt 7.73 321 9.32 321
4 Sl-ggtggy 0.38 0.08 0.00 0.44
5  Sligtgog 0.00 1.01 031 144
6  Slgttggd™ 227 0.75 2.45 0.66

# optimization with 6-31++G(d,p) basis set function, ZPE correction and IEF-
PCM/Bondi solvation model when in water.

© energy calculation with 6-311++G(2df,2pd) basis set function and IEF-
PCM/Bondi solvation model when in water.

S1-gt-tg-gg SZ-gf-gt—gg S3-gt-tg‘-gt S1-tg-tg-gg

Ab initio calculations, at the theory level M06-2X/6-314++4G(d,p), for the geometry
and energy of the conformers of sucrose in the gas phase and implicit solvent (water).

Thiago de Castro Rozada et al.; RSC Advances, 2016, 6, 112806-112812.
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Dynamics of solvated sucrose

FIGURE 2 Free energy landscapes in / -w glycosidic space for su-
aosein the TIP4P/Ew mode. Contour lines are shown from 0.0 to L4
5.0 keal/mol in steps of 0.1 The locdl minima areidenti ed assM1,
M2, M3, and M4; seedso Tablel.
Free energy and dipolar residual coupling calculations for the conformational
changes of sucrose in water. Classical trajectory simulation performed with the

GLYCAM-06 force field and explicit solvent for water.

Xia J., et al.; Biopolymers, 2011, 97, 276.
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Dynamics of solvated sucrose
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Hydrogen bond distributions of sucrose with several models of explicit solvent for
water. Classical trajectory simulation performed with the GLYCAM-06 force field.

Xia J., et al.; Biopolymers, 2011, 97, 276.
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Results

Phenylboronic acid-Sucrose binding energies

HO
OH 6 1
| 0 Ho SH
| 6
OH 4 OH ¢ OH
pKa=8.7 20H 4 OH

Table 1: Binding energies (kcal/mol) for the PBAOH-Sucrose-PBAOH compounds
calculated with the PBEh-3c theory level with the implicit solvent model CPCM

(H20).

2-1 1-3

R S R S
23 g s
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Results

Benzoxaborole-Sucrose binding energies

HO
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B’/\ 3 OH ~
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Ho 4 OH o OH
pKa=7.3] 20H 4 OH

Table 2: Binding energies (kcal/mol) for the BOBOH-Sucrose-BOBOH compounds
calculated with the PBEh-3c theory level with the implicit solvent model CPCM

(H20).
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Conformational energies
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PBAOH(S)-1-3-Fructose-Glucose-4-6-PBAOH(S)
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Results

Ligand desing

single bond connection

sp3 atom fusion connection
C Me—N

sp? atom fusion connection

single bond fusion connection [j@
C
0
double bond fusion connection /O
‘ |
Me

Organic ligands design with the OVERLAY program of the HostDesigner suit.

e
OO0000
e

Hay, B. P.; Firman, T. K.; Inorg. Chem., 2002, 41, 5502-5512.
Hay, B. P., Jia, C.; Nadas, J. Comp. Theor. Chem. 2014, 1028, 72-80.
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Bidentate ligands for sucrose

» Binding energy: kcal /mol
» 1 ligand structure
» RMS < 0.1 A

PBAOH(S)-1-3-Fructose-Glucose-4-6-PBAOH(S)
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Bidentate ligands for sucrose

Fructose-1-PBAOH(S)-2-Glucose-4-6-PBAOH(R)

» Binding energy: kcal/mol
» 467 ligand structures
» RMS < 0.5 A
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Bidentate ligands for sucrose

Fructose-1-PBAOH(S)-2-Glucose-4-6-PBAOH(S)

» Binding energy:
> 7 ligand structures
» RMS < 0.2 A

kcal/mol



Results

Bidentate ligands for sucrose

» Binding energy: kcal/mol
» 2 ligand structures
» RMS < 0.2 A

Fructose-1-PBAOH(R)-2-Glucose-4-6-PBAOH(S)
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Conclusions and perspectives

» We have designed ligands specific for the detection of sucrose, with potential
application for in vivo detection.

» The ligands designed has binding energies of ~ 8 kcal/mol; similar to the
binding energies of lectins to polysaccharides.

» The binding energies of the designed ligands can be increased with the
addition of functional groups, to form new hydrogen bonds with the free
-OH groups in sucrose.

» The addition of Electron withdrawing groups to the ligand will decrease the
pKa, increasing the binding energy. Also, can improve the signal detection
for the analyte.
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