

Characterization of correlation measures with a novel network-based threshold for generating gene co-expression networks. Case study: Rice

Nicolás López-Rozo, Miguel Romero, Jorge Finke, Camilo Rocha

MOTIVATION: ASSESS CRITICAL STEPS IN GENE ENRICHMENT ANALYSIS

[4,20.5]

(36,73]

(73,437]

(20.5, 36]

1. Pearson limitations.

2. Threshold is arbitrary.

WORKFLOW: TOWARDS FUNCTION PREDICTION

DATA

Expression data for *Oryza sativa Japonica*:

Number of genes:	23374
Number of samples:	2678
≻Data source:	NCBI GEO
Expression value range:	0.009 - 280954

For the classification models:

- ➢ 5-fold cross-validation
- > 50 repetitions for each model

- Selected correlation metrics:
- Pearson's Correlation Coeficient (PCC)
- Biweight Midcorrelation (BICOR)
- Distance Correlation (DCORR)
- Maximal Information Coefficient (MIC)
- Total Information Coefficient (TIC)
- Randomized Information Coefficient (RIC)

$$PCC(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$\operatorname{BICOR}(X, Y) = \sum_{i=1}^{n} \tilde{x}_i \tilde{y}_i,$$

$$\tilde{x}_i = \frac{(x_i - \text{med}(x))w_i^{(x)}}{\sqrt{\sum_{j=1}^n [(x_j - \text{med}(x))w_j^{(x)}]^2}}$$

$$\mathrm{DCORR}(X,Y) = \frac{\mathrm{DCov}^2(X,Y)}{\sqrt{\mathrm{DCov}^2(X,X)\mathrm{DCov}^2(Y,Y)}}$$

PROPOSED THRESHOLD COMPUTATION, BASED ON THE TOPOLOGY

PERFORMANCE ASSESSMENT: GENE FUNCTION PREDICTION

Four classification models taking advantage of the hierarchical organization of annotations:

Local Classifier per Node (lcn)

Local Classifier per Level (lcl)

Local Classifier per Parent Node (lcpn)

➢Global (multi-label) Classifier

Evaluation metric for comparison: Area under the average precision-recall curve

PERFORMANCE RESULTS (1): COMPARISON OF CORRELATION METRICS

PROPERTIES OF THE RESULTING NETWORKS

Network	Nodes	Edges	Components	Avg. degree
PCC	11,241	1,195,905	473	212.78
BICOR	7,344	382,202	586	104.09
DCORR	13,069	$2,\!184,\!554$	12	334.31
MIC	14,233	5,790,949	255	813.74
TIC	13,549	$5,\!276,\!496$	275	778.88
RIC	13,383	3,261,088	314	487.35

SUB-HIERARCHIES OF BIOLOGICAL PROCESSES^a

Hierarchy ^b	Description	Functions
GO:0002376	Immune system process	9
GO:0044419	Biological process involved in inter-	13
	species interaction between organisms	
GO:0032501	Multicellular organismal process	18
GO:0022414	Reproductive process	24
GO:0032502	Developmental process	53
GO:0051179	Localization	86
GO:0050896	Response to stimulus	102
GO:0065007	Biological regulation	184
GO:0008152	Metabolic process	399
GO:0009987	Cellular process	517

^a Each sub-hierarchy is considered an independent dataset.

^b Each sub-hierarchy is represented by its root.

El futuro es de todos

Gobierno de Colombia ómi

PERFORMANCE RESULTS (2): COMPARISON OF CLASSIFICATION MODELS

CONCLUSIONS

- Global multi-label classification model performs better with respect to AU-PRC
- GO hierarchies with less than 25 terms have a better performance with RIC GCN
- Similarly, hierarchies with more than 180 terms get better results with BICOR GCN
- Future work: Explore different threshold approaches and characterize network growth as a function of the cut-off value

Aliados

